- -

Salicylate method for ammonia quantification in nitrogen electroreduction experiments: The correction of iron III interference

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Salicylate method for ammonia quantification in nitrogen electroreduction experiments: The correction of iron III interference

Mostrar el registro completo del ítem

Giner-Sanz, JJ.; Leverick, G.; Pérez-Herranz, V.; Shao-Horn, Y. (2020). Salicylate method for ammonia quantification in nitrogen electroreduction experiments: The correction of iron III interference. Journal of The Electrochemical Society. 167(13):1-10. https://doi.org/10.1149/1945-7111/abbdd6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166820

Ficheros en el ítem

Metadatos del ítem

Título: Salicylate method for ammonia quantification in nitrogen electroreduction experiments: The correction of iron III interference
Autor: Giner-Sanz, Juan José Leverick, G.M. Pérez-Herranz, Valentín Shao-Horn, Y.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The salicylate method is one of the ammonia quantification methods that has been extensively used in literature for quantifying ammonia in the emerging field of nitrogen (electro)fixation. The presence of iron in the ...[+]
Palabras clave: Ammonia quantification , Interference quantification and correction , Iron interferences , Salicylate method , UV-visible spectroscopy
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of The Electrochemical Society. (issn: 0013-4651 )
DOI: 10.1149/1945-7111/abbdd6
Editorial:
The Electrochemical Society
Versión del editor: https://doi.org/10.1149/1945-7111/abbdd6
Código del Proyecto:
info:eu-repo/grantAgreement/NSF//1419807/US/MIT Materials Research Science and Engineering Center - Full Proposal/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F001/
Agradecimientos:
This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery program. This work made use of the MRSEC Shared Experimental Facilities at MIT (SEM) supported by the National ...[+]
Tipo: Artículo

References

Kibsgaard, J., Nørskov, J. K., & Chorkendorff, I. (2019). The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 4(12), 2986-2988. doi:10.1021/acsenergylett.9b02286

Wang, Q., Guo, J., & Chen, P. (2020). The Power of Hydrides. Joule, 4(4), 705-709. doi:10.1016/j.joule.2020.02.008

Wang, Y., Shi, M., Bao, D., Meng, F., Zhang, Q., Zhou, Y., … Jiang, Q. (2019). Generating Defect‐Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie International Edition, 58(28), 9464-9469. doi:10.1002/anie.201903969 [+]
Kibsgaard, J., Nørskov, J. K., & Chorkendorff, I. (2019). The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 4(12), 2986-2988. doi:10.1021/acsenergylett.9b02286

Wang, Q., Guo, J., & Chen, P. (2020). The Power of Hydrides. Joule, 4(4), 705-709. doi:10.1016/j.joule.2020.02.008

Wang, Y., Shi, M., Bao, D., Meng, F., Zhang, Q., Zhou, Y., … Jiang, Q. (2019). Generating Defect‐Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie International Edition, 58(28), 9464-9469. doi:10.1002/anie.201903969

Andersen, S. Z., Čolić, V., Yang, S., Schwalbe, J. A., Nielander, A. C., McEnaney, J. M., … Chorkendorff, I. (2019). A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 570(7762), 504-508. doi:10.1038/s41586-019-1260-x

Kim, K., Lee, N., Yoo, C.-Y., Kim, J.-N., Yoon, H. C., & Han, J.-I. (2016). Communication—Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure. Journal of The Electrochemical Society, 163(7), F610-F612. doi:10.1149/2.0231607jes

Murakami, T., Nishikiori, T., Nohira, T., & Ito, Y. (2005). Investigation of Anodic Reaction of Electrolytic Ammonia Synthesis in Molten Salts Under Atmospheric Pressure. Journal of The Electrochemical Society, 152(5), D75. doi:10.1149/1.1874752

Yang, J., Li, T., Zhong, C., Guan, X., & Hu, C. (2016). Nitrogen Fixation in Water Using Air Phase Gliding Arc Plasma. Journal of The Electrochemical Society, 163(10), E288-E292. doi:10.1149/2.0221610jes

Wang, P., Chang, F., Gao, W., Guo, J., Wu, G., He, T., & Chen, P. (2016). Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 9(1), 64-70. doi:10.1038/nchem.2595

Nash, J., Yang, X., Anibal, J., Wang, J., Yan, Y., & Xu, B. (2017). Electrochemical Nitrogen Reduction Reaction on Noble Metal Catalysts in Proton and Hydroxide Exchange Membrane Electrolyzers. Journal of The Electrochemical Society, 164(14), F1712-F1716. doi:10.1149/2.0071802jes

Wang, Q., Guo, J., & Chen, P. (2019). Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry, 36, 25-36. doi:10.1016/j.jechem.2019.01.027

Li, D., Xu, X., Li, Z., Wang, T., & Wang, C. (2020). Detection methods of ammonia nitrogen in water: A review. TrAC Trends in Analytical Chemistry, 127, 115890. doi:10.1016/j.trac.2020.115890

Searle, P. L. (1984). The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. The Analyst, 109(5), 549. doi:10.1039/an9840900549

Song, Y., Johnson, D., Peng, R., Hensley, D. K., Bonnesen, P. V., Liang, L., … Rondinone, A. J. (2018). A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 4(4). doi:10.1126/sciadv.1700336

Ivancic, I. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Research, 18(9), 1143-1147. doi:10.1016/0043-1354(84)90230-6

Ayyub, O. B., Behrens, A. M., Heligman, B. T., Natoli, M. E., Ayoub, J. J., Cunningham, G., … Kofinas, P. (2015). Simple and inexpensive quantification of ammonia in whole blood. Molecular Genetics and Metabolism, 115(2-3), 95-100. doi:10.1016/j.ymgme.2015.04.004

Prieto-Blanco, M. C., Jornet-Martinez, N., Verdú-Andrés, J., Molíns-Legua, C., & Campíns-Falcó, P. (2019). Quantifying both ammonium and proline in wines and beer by using a PDMS composite for sensoring. Talanta, 198, 371-376. doi:10.1016/j.talanta.2019.02.001

Prieto-Blanco, M. C., Jornet-Martínez, N., Moliner-Martínez, Y., Molins-Legua, C., Herráez-Hernández, R., Verdú Andrés, J., & Campins-Falcó, P. (2015). Development of a polydimethylsiloxane–thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples. Science of The Total Environment, 503-504, 105-112. doi:10.1016/j.scitotenv.2014.07.077

Prieto-Blanco, M. C., Ballester-Caudet, A., Souto-Varela, F. J., López-Mahía, P., & Campíns-Falcó, P. (2020). Rapid evaluation of ammonium in different rain events minimizing needed volume by a cost-effective and sustainable PDMS supported solid sensor. Environmental Pollution, 265, 114911. doi:10.1016/j.envpol.2020.114911

McEnaney, J. M., Blair, S. J., Nielander, A. C., Schwalbe, J. A., Koshy, D. M., Cargnello, M., & Jaramillo, T. F. (2020). Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustainable Chemistry & Engineering, 8(7), 2672-2681. doi:10.1021/acssuschemeng.9b05983

Schiffer, Z. J., Lazouski, N., Corbin, N., & Manthiram, K. (2019). Nature of the First Electron Transfer in Electrochemical Ammonia Activation in a Nonaqueous Medium. The Journal of Physical Chemistry C, 123(15), 9713-9720. doi:10.1021/acs.jpcc.9b00669

Moliner-Martínez, Y., Herráez-Hernández, R., & Campíns-Falcó, P. (2005). Improved detection limit for ammonium/ammonia achieved by Berthelot’s reaction by use of solid-phase extraction coupled to diffuse reflectance spectroscopy. Analytica Chimica Acta, 534(2), 327-334. doi:10.1016/j.aca.2004.11.044

López Pasquali, C. E., Fernández Hernando, P., & Durand Alegría, J. S. (2007). Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis. Analytica Chimica Acta, 600(1-2), 177-182. doi:10.1016/j.aca.2007.03.015

Kashima, H., & Regan, J. M. (2015). Facultative Nitrate Reduction by Electrode-Respiring Geobacter metallireducens Biofilms as a Competitive Reaction to Electrode Reduction in a Bioelectrochemical System. Environmental Science & Technology, 49(5), 3195-3202. doi:10.1021/es504882f

Caballo-López, A., & Luque de Castro, M. D. (2006). Continuous Ultrasound-Assisted Extraction Coupled to Flow Injection−Pervaporation, Derivatization, and Spectrophotometric Detection for the Determination of Ammonia in Cigarettes. Analytical Chemistry, 78(7), 2297-2301. doi:10.1021/ac051115u

Bietz, J. A. (1974). Micro-Kjeldahl analysis by an improved automated ammonia determination following manual digestion. Analytical Chemistry, 46(11), 1617-1618. doi:10.1021/ac60347a040

Lazouski, N., Schiffer, Z. J., Williams, K., & Manthiram, K. (2019). Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction. Joule, 3(4), 1127-1139. doi:10.1016/j.joule.2019.02.003

McEnaney, J. M., Singh, A. R., Schwalbe, J. A., Kibsgaard, J., Lin, J. C., Cargnello, M., … Nørskov, J. K. (2017). Ammonia synthesis from N2and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy & Environmental Science, 10(7), 1621-1630. doi:10.1039/c7ee01126a

Cerdà, A., Oms, M. T., Forteza, R., & Cerdà, V. (1995). Evaluation of flow injection methods for ammonium determination in wastewater samples. Analytica Chimica Acta, 311(2), 165-173. doi:10.1016/0003-2670(95)00182-y

Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002

Verdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 12(6), 399-402. doi:10.1016/0043-1354(78)90107-0

Kempers, A. J., & Kok, C. J. (1989). Re-examination of the determination of ammonium as the indophenol blue complex using salicylate. Analytica Chimica Acta, 221, 147-155. doi:10.1016/s0003-2670(00)81948-0

Yu, H., Yang, L., Li, D., & Chen, Y. (2021). A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture. Information Processing in Agriculture, 8(1), 64-74. doi:10.1016/j.inpa.2020.04.002

Wang, C., Li, Z., Pan, Z., & Li, D. (2018). Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture. Computers and Electronics in Agriculture, 150, 364-373. doi:10.1016/j.compag.2018.05.011

Fernandez, C. A., Hortance, N. M., Liu, Y.-H., Lim, J., Hatzell, K. B., & Hatzell, M. C. (2020). Opportunities for intermediate temperature renewable ammonia electrosynthesis. Journal of Materials Chemistry A, 8(31), 15591-15606. doi:10.1039/d0ta03753b

Guo, J., & Chen, P. (2017). Catalyst: NH3 as an Energy Carrier. Chem, 3(5), 709-712. doi:10.1016/j.chempr.2017.10.004

Sclafani, A., Augugliaro, V., & Schiavello, M. (1983). Dinitrogen Electrochemical Reduction to Ammonia over Iron Cathode in Aqueous Medium. Journal of The Electrochemical Society, 130(3), 734-736. doi:10.1149/1.2119794

Zhou, F., Azofra, L. M., Ali, M., Kar, M., Simonov, A. N., McDonnell-Worth, C., … MacFarlane, D. R. (2017). Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 10(12), 2516-2520. doi:10.1039/c7ee02716h

Mcdonald, M., Fuller, J., Fortunelli, A., Goddard, W. A., & An, Q. (2019). Highly Efficient Ni-Doped Iron Catalyst for Ammonia Synthesis from Quantum-Mechanics-Based Hierarchical High-Throughput Catalyst Screening. The Journal of Physical Chemistry C, 123(28), 17375-17383. doi:10.1021/acs.jpcc.9b04386

Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., & Centi, G. (2017). Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angewandte Chemie International Edition, 56(10), 2699-2703. doi:10.1002/anie.201609533

Wang, H.-B., Wang, J.-Q., Zhang, R., Cheng, C.-Q., Qiu, K.-W., Yang, Y., … Du, X.-W. (2020). Bionic Design of a Mo(IV)-Doped FeS2 Catalyst for Electroreduction of Dinitrogen to Ammonia. ACS Catalysis, 10(9), 4914-4921. doi:10.1021/acscatal.0c00271

Bower, C. E., & Holm-Hansen, T. (1980). A Salicylate–Hypochlorite Method for Determining Ammonia in Seawater. Canadian Journal of Fisheries and Aquatic Sciences, 37(5), 794-798. doi:10.1139/f80-106

Le, P. T. T., & Boyd, C. E. (2012). Comparison of Phenate and Salicylate Methods for Determination of Total Ammonia Nitrogen in Freshwater and Saline Water. Journal of the World Aquaculture Society, 43(6), 885-889. doi:10.1111/j.1749-7345.2012.00616.x

Pym, R. V. E., & Milham, P. J. (1976). Selectivity of reaction among chlorine, ammonia, and salicylate for determination of ammonia. Analytical Chemistry, 48(9), 1413-1415. doi:10.1021/ac50003a035

Krom, M. D. (1980). Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. The Analyst, 105(1249), 305. doi:10.1039/an9800500305

Viollier, E., Inglett, P. ., Hunter, K., Roychoudhury, A. ., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15(6), 785-790. doi:10.1016/s0883-2927(99)00097-9

Yegorov, D. Y., Kozlov, A. V., Azizova, O. A., & Vladimirov, Y. A. (1993). Simultaneous determination of Fe(III) and Fe(II) in water solutions and tissue homogenates using desferal and 1,10-phenanthroline. Free Radical Biology and Medicine, 15(6), 565-574. doi:10.1016/0891-5849(93)90158-q

BAG, H., TÜRKER, A. R., TUNÇELI, A., & LALE, M. (2001). Determination of Fe(II)and Fe(III)in Water by Flame Atomic Absorption Spectrophotometry after Their Separation with Aspergillus niger Immobilized on Sepiolite. Analytical Sciences, 17(7), 901-904. doi:10.2116/analsci.17.901

Kaasalainen, H., Stefánsson, A., & Druschel, G. K. (2016). Determination of Fe(II), Fe(III) and Fetotal in thermal water by ion chromatography spectrophotometry (IC-Vis). International Journal of Environmental Analytical Chemistry, 96(11), 1074-1090. doi:10.1080/03067319.2016.1232717

Pu, X., Hu, B., Jiang, Z., & Huang, C. (2005). Speciation of dissolved iron(ii) and iron(iii) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. The Analyst, 130(8), 1175. doi:10.1039/b502548f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem