Kibsgaard, J., Nørskov, J. K., & Chorkendorff, I. (2019). The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 4(12), 2986-2988. doi:10.1021/acsenergylett.9b02286
Wang, Q., Guo, J., & Chen, P. (2020). The Power of Hydrides. Joule, 4(4), 705-709. doi:10.1016/j.joule.2020.02.008
Wang, Y., Shi, M., Bao, D., Meng, F., Zhang, Q., Zhou, Y., … Jiang, Q. (2019). Generating Defect‐Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie International Edition, 58(28), 9464-9469. doi:10.1002/anie.201903969
[+]
Kibsgaard, J., Nørskov, J. K., & Chorkendorff, I. (2019). The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 4(12), 2986-2988. doi:10.1021/acsenergylett.9b02286
Wang, Q., Guo, J., & Chen, P. (2020). The Power of Hydrides. Joule, 4(4), 705-709. doi:10.1016/j.joule.2020.02.008
Wang, Y., Shi, M., Bao, D., Meng, F., Zhang, Q., Zhou, Y., … Jiang, Q. (2019). Generating Defect‐Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie International Edition, 58(28), 9464-9469. doi:10.1002/anie.201903969
Andersen, S. Z., Čolić, V., Yang, S., Schwalbe, J. A., Nielander, A. C., McEnaney, J. M., … Chorkendorff, I. (2019). A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 570(7762), 504-508. doi:10.1038/s41586-019-1260-x
Kim, K., Lee, N., Yoo, C.-Y., Kim, J.-N., Yoon, H. C., & Han, J.-I. (2016). Communication—Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure. Journal of The Electrochemical Society, 163(7), F610-F612. doi:10.1149/2.0231607jes
Murakami, T., Nishikiori, T., Nohira, T., & Ito, Y. (2005). Investigation of Anodic Reaction of Electrolytic Ammonia Synthesis in Molten Salts Under Atmospheric Pressure. Journal of The Electrochemical Society, 152(5), D75. doi:10.1149/1.1874752
Yang, J., Li, T., Zhong, C., Guan, X., & Hu, C. (2016). Nitrogen Fixation in Water Using Air Phase Gliding Arc Plasma. Journal of The Electrochemical Society, 163(10), E288-E292. doi:10.1149/2.0221610jes
Wang, P., Chang, F., Gao, W., Guo, J., Wu, G., He, T., & Chen, P. (2016). Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 9(1), 64-70. doi:10.1038/nchem.2595
Nash, J., Yang, X., Anibal, J., Wang, J., Yan, Y., & Xu, B. (2017). Electrochemical Nitrogen Reduction Reaction on Noble Metal Catalysts in Proton and Hydroxide Exchange Membrane Electrolyzers. Journal of The Electrochemical Society, 164(14), F1712-F1716. doi:10.1149/2.0071802jes
Wang, Q., Guo, J., & Chen, P. (2019). Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry, 36, 25-36. doi:10.1016/j.jechem.2019.01.027
Li, D., Xu, X., Li, Z., Wang, T., & Wang, C. (2020). Detection methods of ammonia nitrogen in water: A review. TrAC Trends in Analytical Chemistry, 127, 115890. doi:10.1016/j.trac.2020.115890
Searle, P. L. (1984). The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. The Analyst, 109(5), 549. doi:10.1039/an9840900549
Song, Y., Johnson, D., Peng, R., Hensley, D. K., Bonnesen, P. V., Liang, L., … Rondinone, A. J. (2018). A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 4(4). doi:10.1126/sciadv.1700336
Ivancic, I. (1984). An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Research, 18(9), 1143-1147. doi:10.1016/0043-1354(84)90230-6
Ayyub, O. B., Behrens, A. M., Heligman, B. T., Natoli, M. E., Ayoub, J. J., Cunningham, G., … Kofinas, P. (2015). Simple and inexpensive quantification of ammonia in whole blood. Molecular Genetics and Metabolism, 115(2-3), 95-100. doi:10.1016/j.ymgme.2015.04.004
Prieto-Blanco, M. C., Jornet-Martinez, N., Verdú-Andrés, J., Molíns-Legua, C., & Campíns-Falcó, P. (2019). Quantifying both ammonium and proline in wines and beer by using a PDMS composite for sensoring. Talanta, 198, 371-376. doi:10.1016/j.talanta.2019.02.001
Prieto-Blanco, M. C., Jornet-Martínez, N., Moliner-Martínez, Y., Molins-Legua, C., Herráez-Hernández, R., Verdú Andrés, J., & Campins-Falcó, P. (2015). Development of a polydimethylsiloxane–thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples. Science of The Total Environment, 503-504, 105-112. doi:10.1016/j.scitotenv.2014.07.077
Prieto-Blanco, M. C., Ballester-Caudet, A., Souto-Varela, F. J., López-Mahía, P., & Campíns-Falcó, P. (2020). Rapid evaluation of ammonium in different rain events minimizing needed volume by a cost-effective and sustainable PDMS supported solid sensor. Environmental Pollution, 265, 114911. doi:10.1016/j.envpol.2020.114911
McEnaney, J. M., Blair, S. J., Nielander, A. C., Schwalbe, J. A., Koshy, D. M., Cargnello, M., & Jaramillo, T. F. (2020). Electrolyte Engineering for Efficient Electrochemical Nitrate Reduction to Ammonia on a Titanium Electrode. ACS Sustainable Chemistry & Engineering, 8(7), 2672-2681. doi:10.1021/acssuschemeng.9b05983
Schiffer, Z. J., Lazouski, N., Corbin, N., & Manthiram, K. (2019). Nature of the First Electron Transfer in Electrochemical Ammonia Activation in a Nonaqueous Medium. The Journal of Physical Chemistry C, 123(15), 9713-9720. doi:10.1021/acs.jpcc.9b00669
Moliner-Martínez, Y., Herráez-Hernández, R., & Campíns-Falcó, P. (2005). Improved detection limit for ammonium/ammonia achieved by Berthelot’s reaction by use of solid-phase extraction coupled to diffuse reflectance spectroscopy. Analytica Chimica Acta, 534(2), 327-334. doi:10.1016/j.aca.2004.11.044
López Pasquali, C. E., Fernández Hernando, P., & Durand Alegría, J. S. (2007). Spectrophotometric simultaneous determination of nitrite, nitrate and ammonium in soils by flow injection analysis. Analytica Chimica Acta, 600(1-2), 177-182. doi:10.1016/j.aca.2007.03.015
Kashima, H., & Regan, J. M. (2015). Facultative Nitrate Reduction by Electrode-Respiring Geobacter metallireducens Biofilms as a Competitive Reaction to Electrode Reduction in a Bioelectrochemical System. Environmental Science & Technology, 49(5), 3195-3202. doi:10.1021/es504882f
Caballo-López, A., & Luque de Castro, M. D. (2006). Continuous Ultrasound-Assisted Extraction Coupled to Flow Injection−Pervaporation, Derivatization, and Spectrophotometric Detection for the Determination of Ammonia in Cigarettes. Analytical Chemistry, 78(7), 2297-2301. doi:10.1021/ac051115u
Bietz, J. A. (1974). Micro-Kjeldahl analysis by an improved automated ammonia determination following manual digestion. Analytical Chemistry, 46(11), 1617-1618. doi:10.1021/ac60347a040
Lazouski, N., Schiffer, Z. J., Williams, K., & Manthiram, K. (2019). Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction. Joule, 3(4), 1127-1139. doi:10.1016/j.joule.2019.02.003
McEnaney, J. M., Singh, A. R., Schwalbe, J. A., Kibsgaard, J., Lin, J. C., Cargnello, M., … Nørskov, J. K. (2017). Ammonia synthesis from N2and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy & Environmental Science, 10(7), 1621-1630. doi:10.1039/c7ee01126a
Cerdà, A., Oms, M. T., Forteza, R., & Cerdà, V. (1995). Evaluation of flow injection methods for ammonium determination in wastewater samples. Analytica Chimica Acta, 311(2), 165-173. doi:10.1016/0003-2670(95)00182-y
Molins-Legua, C., Meseguer-Lloret, S., Moliner-Martinez, Y., & Campíns-Falcó, P. (2006). A guide for selecting the most appropriate method for ammonium determination in water analysis. TrAC Trends in Analytical Chemistry, 25(3), 282-290. doi:10.1016/j.trac.2005.12.002
Verdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. Water Research, 12(6), 399-402. doi:10.1016/0043-1354(78)90107-0
Kempers, A. J., & Kok, C. J. (1989). Re-examination of the determination of ammonium as the indophenol blue complex using salicylate. Analytica Chimica Acta, 221, 147-155. doi:10.1016/s0003-2670(00)81948-0
Yu, H., Yang, L., Li, D., & Chen, Y. (2021). A hybrid intelligent soft computing method for ammonia nitrogen prediction in aquaculture. Information Processing in Agriculture, 8(1), 64-74. doi:10.1016/j.inpa.2020.04.002
Wang, C., Li, Z., Pan, Z., & Li, D. (2018). Development and characterization of a highly sensitive fluorometric transducer for ultra low aqueous ammonia nitrogen measurements in aquaculture. Computers and Electronics in Agriculture, 150, 364-373. doi:10.1016/j.compag.2018.05.011
Fernandez, C. A., Hortance, N. M., Liu, Y.-H., Lim, J., Hatzell, K. B., & Hatzell, M. C. (2020). Opportunities for intermediate temperature renewable ammonia electrosynthesis. Journal of Materials Chemistry A, 8(31), 15591-15606. doi:10.1039/d0ta03753b
Guo, J., & Chen, P. (2017). Catalyst: NH3 as an Energy Carrier. Chem, 3(5), 709-712. doi:10.1016/j.chempr.2017.10.004
Sclafani, A., Augugliaro, V., & Schiavello, M. (1983). Dinitrogen Electrochemical Reduction to Ammonia over Iron Cathode in Aqueous Medium. Journal of The Electrochemical Society, 130(3), 734-736. doi:10.1149/1.2119794
Zhou, F., Azofra, L. M., Ali, M., Kar, M., Simonov, A. N., McDonnell-Worth, C., … MacFarlane, D. R. (2017). Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 10(12), 2516-2520. doi:10.1039/c7ee02716h
Mcdonald, M., Fuller, J., Fortunelli, A., Goddard, W. A., & An, Q. (2019). Highly Efficient Ni-Doped Iron Catalyst for Ammonia Synthesis from Quantum-Mechanics-Based Hierarchical High-Throughput Catalyst Screening. The Journal of Physical Chemistry C, 123(28), 17375-17383. doi:10.1021/acs.jpcc.9b04386
Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., & Centi, G. (2017). Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst. Angewandte Chemie International Edition, 56(10), 2699-2703. doi:10.1002/anie.201609533
Wang, H.-B., Wang, J.-Q., Zhang, R., Cheng, C.-Q., Qiu, K.-W., Yang, Y., … Du, X.-W. (2020). Bionic Design of a Mo(IV)-Doped FeS2 Catalyst for Electroreduction of Dinitrogen to Ammonia. ACS Catalysis, 10(9), 4914-4921. doi:10.1021/acscatal.0c00271
Bower, C. E., & Holm-Hansen, T. (1980). A Salicylate–Hypochlorite Method for Determining Ammonia in Seawater. Canadian Journal of Fisheries and Aquatic Sciences, 37(5), 794-798. doi:10.1139/f80-106
Le, P. T. T., & Boyd, C. E. (2012). Comparison of Phenate and Salicylate Methods for Determination of Total Ammonia Nitrogen in Freshwater and Saline Water. Journal of the World Aquaculture Society, 43(6), 885-889. doi:10.1111/j.1749-7345.2012.00616.x
Pym, R. V. E., & Milham, P. J. (1976). Selectivity of reaction among chlorine, ammonia, and salicylate for determination of ammonia. Analytical Chemistry, 48(9), 1413-1415. doi:10.1021/ac50003a035
Krom, M. D. (1980). Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. The Analyst, 105(1249), 305. doi:10.1039/an9800500305
Viollier, E., Inglett, P. ., Hunter, K., Roychoudhury, A. ., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15(6), 785-790. doi:10.1016/s0883-2927(99)00097-9
Yegorov, D. Y., Kozlov, A. V., Azizova, O. A., & Vladimirov, Y. A. (1993). Simultaneous determination of Fe(III) and Fe(II) in water solutions and tissue homogenates using desferal and 1,10-phenanthroline. Free Radical Biology and Medicine, 15(6), 565-574. doi:10.1016/0891-5849(93)90158-q
BAG, H., TÜRKER, A. R., TUNÇELI, A., & LALE, M. (2001). Determination of Fe(II)and Fe(III)in Water by Flame Atomic Absorption Spectrophotometry after Their Separation with Aspergillus niger Immobilized on Sepiolite. Analytical Sciences, 17(7), 901-904. doi:10.2116/analsci.17.901
Kaasalainen, H., Stefánsson, A., & Druschel, G. K. (2016). Determination of Fe(II), Fe(III) and Fetotal in thermal water by ion chromatography spectrophotometry (IC-Vis). International Journal of Environmental Analytical Chemistry, 96(11), 1074-1090. doi:10.1080/03067319.2016.1232717
Pu, X., Hu, B., Jiang, Z., & Huang, C. (2005). Speciation of dissolved iron(ii) and iron(iii) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. The Analyst, 130(8), 1175. doi:10.1039/b502548f
[-]