- -

Colour image denoising by eigenvector analysis of neighbourhood colour samples

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Colour image denoising by eigenvector analysis of neighbourhood colour samples

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre-Carmona, Pedro es_ES
dc.contributor.author Miñana, Juan-José es_ES
dc.contributor.author Morillas, Samuel es_ES
dc.date.accessioned 2021-05-27T03:34:47Z
dc.date.available 2021-05-27T03:34:47Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 1863-1703 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166837
dc.description.abstract [EN] Colour image smoothing is a challenging task because it is necessary to appropriately distinguish between noise and original structures, and to smooth noise conveniently. In addition, this processing must take into account the correlation among the image colour channels. In this paper, we introduce a novel colour image denoising method where each image pixel is processed according to an eigenvector analysis of a data matrix built from the pixel neighbourhood colour values. The aim of this eigenvector analysis is threefold: (i) to manage the local correlation among the colour image channels, (ii) to distinguish between flat and edge/textured regions and (iii) to determine the amount of needed smoothing. Comparisons with classical and recent methods show that the proposed approach is competitive and able to provide significative improvements. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Signal Image and Video Processing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Colour image filter es_ES
dc.subject Colour image smoothing es_ES
dc.subject Eigenvectors es_ES
dc.subject Gaussian noise es_ES
dc.subject Principal components es_ES
dc.subject Vector filter es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Colour image denoising by eigenvector analysis of neighbourhood colour samples es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11760-019-01575-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Latorre-Carmona, P.; Miñana, J.; Morillas, S. (2020). Colour image denoising by eigenvector analysis of neighbourhood colour samples. Signal Image and Video Processing. 14(3):483-490. https://doi.org/10.1007/s11760-019-01575-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11760-019-01575-5 es_ES
dc.description.upvformatpinicio 483 es_ES
dc.description.upvformatpfin 490 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\418236 es_ES
dc.description.references Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Berlin (2000) es_ES
dc.description.references Lukac, R., Smolka, B., Martin, K., Plataniotis, K.N., Venetsanopoulos, A.N.: Vector Filtering for Color Imaging. IEEE Signal Processing Magazine, Special Issue on Color Image Processing 22, 74–86 (2005) es_ES
dc.description.references Lukac, R., Plataniotis, K.N.: A taxonomy of color image filtering and enhancement solutions. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 140, pp. 187–264. Elsevier Acedemic Press, Amsterdam (2006) es_ES
dc.description.references Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76, 123–139 (2008) es_ES
dc.description.references Tomasi, C., Manduchi, R.: Bilateral filter for gray and color images. In: Proceedings of IEEE International Conference Computer Vision, pp. 839–846 (1998) es_ES
dc.description.references Elad, M.: On the origin of bilateral filter and ways to improve it. IEEE Trans. Image Process. 11, 1141–1151 (2002) es_ES
dc.description.references Kao, W.C., Chen, Y.J.: Multistage bilateral noise filtering and edge detection for color image enhancement. IEEE Trans. Consum. Electron. 51, 1346–1351 (2005) es_ES
dc.description.references Garnett, R., Huegerich, T., Chui, C., He, W.: A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14, 1747–1754 (2005) es_ES
dc.description.references Morillas, S., Gregori, V., Sapena, A.: Fuzzy Bilateral Filtering for color images. Lecture Notes Comput. Sci. 4141, 138–145 (2006) es_ES
dc.description.references Zhang, B., Allenbach, J.P.: Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 17, 664–678 (2008) es_ES
dc.description.references Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer group image enhancement. IEEE Trans. Image Process. 10, 326–334 (2001) es_ES
dc.description.references Morillas, S., Gregori, V., Hervás, A.: Fuzzy peer groups for reducing mixed Gaussian-impulse noise from color images. IEEE Trans. Image Process. 18, 1452–1466 (2009) es_ES
dc.description.references Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N.: Adaptive fuzzy systems for multichannel signal processing. Proc. IEEE 87, 1601–1622 (1999) es_ES
dc.description.references Schulte, S., De Witte, V., Kerre, E.E.: A fuzzy noise reduction method for colour images. IEEE Trans. Image Process. 16, 1425–1436 (2007) es_ES
dc.description.references Shen, Y., Barner, K.: Fuzzy vector median-based surface smoothing. IEEE Trans. Vis. Comput. Graph. 10, 252–265 (2004) es_ES
dc.description.references Lukac, R., Plataniotis, K.N., Smolka, B., Venetsanopoulos, A.N.: cDNA microarray image processing using fuzzy vector filtering framework. Fuzzy Sets Syst. 152, 17–35 (2005) es_ES
dc.description.references Smolka, B.: On the new robust algorithm of noise reduction in color images. Comput. Graph. 27, 503–513 (2003) es_ES
dc.description.references Van de Ville, D., Nachtegael, M., Van der Weken, D., Philips, W., Lemahieu, I., Kerre, E.E.: Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 11, 429–436 (2003) es_ES
dc.description.references Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.E.: Histogram-based fuzzy colour filter for image restoration. Image Vis. Comput. 25, 1377–1390 (2007) es_ES
dc.description.references Nachtegael, M., Schulte, S., Van der Weken, D., De Witte, V., Kerre, E.E.: Gaussian noise reduction in grayscale images. Int. J. Intell. Syst. Technol. Appl. 1, 211–233 (2006) es_ES
dc.description.references Schulte, S., De Witte, V., Nachtegael, M., Mélange, T., Kerre, E.E.: A new fuzzy additive noise reduction method. Lecture Notes Comput. Sci. 4633, 12–23 (2007) es_ES
dc.description.references Morillas, S., Schulte, S., Mélange, T., Kerre, E.E., Gregori, V.: A soft-switching approach to improve visual quality of colour image smoothing filters. In: Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS07, Lecture Notes in Computer Science, vol. 4678, pp. 254–261 (2007) es_ES
dc.description.references Lucchese, L., Mitra, S.K.: A new class of chromatic filters for color image processing: theory and applications. IEEE Trans. Image Process. 13, 534–548 (2004) es_ES
dc.description.references Lee, J.A., Geets, X., Grégoire, V., Bol, A.: Edge-preserving filtering of images with low photon counts. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1014–1027 (2008) es_ES
dc.description.references Russo, F.: Technique for image denoising based on adaptive piecewise linear filters and automatic parameter tuning. IEEE Trans. Instrum. Meas. 55, 1362–1367 (2006) es_ES
dc.description.references Shao, M., Barner, K.E.: Optimization of partition-based weighted sum filters and their application to image denoising. IEEE Trans. Image Process. 15, 1900–1915 (2006) es_ES
dc.description.references Ma, Z., Wu, H.R., Feng, D.: Partition based vector filtering technique for suppression of noise in digital color images. IEEE Trans. Image Process. 15, 2324–2342 (2006) es_ES
dc.description.references Ma, Z., Wu, H.R., Feng, D.: Fuzzy vector partition filtering technique for color image restoration. Comput. Vis. Image Underst. 107, 26–37 (2007) es_ES
dc.description.references Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990) es_ES
dc.description.references Sroubek, F., Flusser, J.: Multichannel blind iterative image restoration. IEEE Trans. Image Process. 12, 1094–1106 (2003) es_ES
dc.description.references Hu, J., Wang, Y., Shen, Y.: Noise reduction and edge detection via kernel anisotropic diffusion. Pattern Recognit. Lett. 29, 1496–1503 (2008) es_ES
dc.description.references Li, X.: On modeling interchannel dependency for color image denoising. Int. J. Imaging Syst. Technol., Special issue on applied color image processing 17, 163–173 (2007) es_ES
dc.description.references Keren, D., Gotlib, A.: Denoising color images using regularization and correlation terms. J. Vis. Commun. Image Represent. 9, 352–365 (1998) es_ES
dc.description.references Lezoray, O., Elmoataz, A., Bougleux, S.: Graph regularization for color image processing. Comput. Vis. Image Underst. 107, 38–55 (2007) es_ES
dc.description.references Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17, 1047–1060 (2008) es_ES
dc.description.references Blomgren, P., Chan, T.: Color TV: total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7, 304–309 (1998) es_ES
dc.description.references Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework from different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27, 506–517 (2005) es_ES
dc.description.references Plonka, G., Ma, J.: Nonlinear regularized reaction-diffusion filters for denoising of images with textures. IEEE Trans. Image Process. 17, 1283–1294 (2007) es_ES
dc.description.references Melange, T., Zlokolica, V., Schulte, S., De Witte, V., Nachtegael, M., Pizurca, A., Kerre, E.E., Philips, W.: A new fuzzy motion and detail adaptive video filter. Lecture Notes Comput. Sci. 4678, 640–651 (2007) es_ES
dc.description.references De Backer, S., Pizurica, A., Huysmans, B., Philips, W., Scheunders, P.: Denoising of multicomponent images using wavelet least-squares estimators. Image Vis. Comput. 26, 1038–1051 (2008) es_ES
dc.description.references Dengwen, Z., Wengang, C.: Image denoising with an optimal threshold and neighboring window. Pattern Recognit. Lett. 29, 1694–1697 (2008) es_ES
dc.description.references Schulte, S., Huysmans, B., Pizurica, A., Kerre, E.E., Philips, W.: A new fuzzy-based wavelet shrinkage image denoising technique. In: Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS06, Lecture Notes in Computer Science, vol. 4179, pp. 12–23 (2006) es_ES
dc.description.references Pizurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single and multiband image denoising. IEEE Trans. Image Process. 15, 654–665 (2006) es_ES
dc.description.references Scheunders, P.: Wavelet thresholding of multivalued images. IEEE Trans. Image Process. 13, 475–483 (2004) es_ES
dc.description.references Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50, 2744–2756 (2002) es_ES
dc.description.references Balster, E.J., Zheng, Y.F., Ewing, R.L.: Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans. Image Process. 14, 2024–2039 (2005) es_ES
dc.description.references Miller, M., Kingsbury, N.: Image denoising using derotated complex wavelet coefficients. IEEE Trans. Image Process. 17, 1500–1511 (2008) es_ES
dc.description.references Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets, and curvelets for poisson noise removal. IEEE Trans. Image Process. 17, 1093–1108 (2008) es_ES
dc.description.references Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007) es_ES
dc.description.references Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: Proceedings of the IEEE International Conference on Image Processing ICIP2007 , pp. 313–316 (2007) es_ES
dc.description.references Hao, B.B., Li, M., Feng, X.C.: Wavelet iterative regularization for image restoration with varying scale parameter. Signal Process. Image Commun. 23, 433–441 (2008) es_ES
dc.description.references Zhao, W., Pope, A.: Image restoration under significat additive noise. IEEE Signal Process. Lett. 14, 401–404 (2007) es_ES
dc.description.references Gijbels, I., Lambert, A., Qiu, P.: Edge-preserving image denoising and estimation of discontinuous surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1075–1087 (2006) es_ES
dc.description.references Liu, C., Szeliski, R., Kang, S.B., Zitnik, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2008) es_ES
dc.description.references Oja, E.: Principal components, minor components, and linear neural networks. Neural Netw. 5, 927–935 (1992) es_ES
dc.description.references Takahashi, T.: Kurita, T.: Robust de-noising by kernel PCA. In: Proceedings of ICANN2002, Lecture Notes in Computer Science, vol. 2145, pp. 739–744 (2002) es_ES
dc.description.references Park, H., Moon, Y.S.: Automatic denoising of 2D color face images using recursive PCA reconstruction. In: Proceedings of Advanced Concepts for Intelligent Vision Systems ACIVS06, Lecture Notes in Computer Science, vol. 4179, pp. 799–809 (2006) es_ES
dc.description.references Teixeira, A.R., Tomé, A.M., Stadlthanner, K., Lang, E.W.: KPCA denoising and the pre-image problem revisited. Digital Signal Process. 18, 568–580 (2008) es_ES
dc.description.references Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78, 678–689 (1990) es_ES
dc.description.references Morillas, S., Gregori, V., Sapena, A.: Adaptive marginal median filter for colour images. Sensors 11, 3205–3213 (2011) es_ES
dc.description.references Morillas, S., Gregori, V.: Robustifying vector median filter. Sensors 11, 8115–8126 (2011) es_ES
dc.description.references Dillon, W.R., Goldstein, M.: Multivariate Analysis: Methods and Applications. Wiley, Hoboken (1984) es_ES
dc.description.references Jackson, J.E.: A User’s Guide to Principal Components. Wiley, Hoboken (2003) es_ES
dc.description.references Camacho, J., Picó, J.: Multi-phase principal component analysis for batch processes modelling. Chemom. Intell. Lab. Syst. 81, 127–136 (2006) es_ES
dc.description.references Nomikos, P., MacGregor, J.: Multivariate SPC charts for monitoring batch processes. Technometrics 37, 41–59 (1995) es_ES
dc.description.references Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004) es_ES
dc.description.references Grecova, Svetlana, Morillas, Samuel: Perceptual similarity between color images using fuzzy metrics. J. Vis. Commun. Image Represent. 34, 230–235 (2016) es_ES
dc.description.references Fairchild, M.D., Johnson, G.M.: iCAM framework for image appearance differences and quality. J. Electron. Imaging 13(1), 126–138 (2004) es_ES
dc.description.references Immerkaer, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64, 300–302 (1996) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem