- -

Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Buendía, Angel M. es_ES
dc.contributor.author García-Baños, Beatriz es_ES
dc.contributor.author Urquiola, M. Mar es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.contributor.author Penaranda-Foix, Felipe L. es_ES
dc.date.accessioned 2021-05-27T03:34:57Z
dc.date.available 2021-05-27T03:34:57Z
dc.date.issued 2020-12-21 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166839
dc.description.abstract [EN] Mineral transformations of the gypsum-anhydrite system under microwave heating have been studied using in situ dielectric thermal analysis (MW-DETA) and Raman spectroscopy simultaneously. The dielectric properties of samples that were measured under microwave heating provided thorough information about the dynamics of the gypsum-anhydrite system transformations and its significance from the mineralogical point of view. In particular, the MW-DETA technique revealed a new intermediate phase with a gamma-anhydrite structure. This phase corresponds to the soluble stage of gamma-anhydrite, and it is characterized by a high ionic charge inside the crystal channels. The complete sequence is gypsum -> 0.625-subhydrate -> bassanite -> hydro gamma-anhydrite -> anhydrous gamma-anhydrite -> beta-anhydrite. The transformations were also assessed using DSC, TG, DTA and dielectric measurements at room temperature, as well as other techniques including X-ray powder diffraction (XRPD) and high-temperature XRD (HT-XRD). Correlations between the dielectric properties with temperature and the rest of the techniques elucidated the heating mechanisms of this material under microwave energy during the different stages. The in situ combination of the MW-DETA and the Raman analysis appears to be a powerful technique, providing new insights about the mechanisms which govern the volumetric heating of this and other materials. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0cp04926c es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation López-Buendía, AM.; García-Baños, B.; Urquiola, MM.; Catalá Civera, JM.; Penaranda-Foix, FL. (2020). Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy. Physical Chemistry Chemical Physics. 22(47):27713-27723. https://doi.org/10.1039/d0cp04926c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0cp04926c es_ES
dc.description.upvformatpinicio 27713 es_ES
dc.description.upvformatpfin 27723 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 47 es_ES
dc.identifier.pmid 33242036 es_ES
dc.relation.pasarela S\432733 es_ES
dc.description.references A. C. Metaxas and R. J.Meredith , Industrial microwave heating , Peregrinus , London , 1983 es_ES
dc.description.references Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97. doi:10.1016/j.compositesa.2015.10.035 es_ES
dc.description.references Gutiérrez, J. D., Catalá-Civera, J. M., Bows, J., & Peñaranda-Foix, F. L. (2017). Dynamic measurement of dielectric properties of food snack pellets during microwave expansion. Journal of Food Engineering, 202, 1-8. doi:10.1016/j.jfoodeng.2017.01.021 es_ES
dc.description.references Kingman, S. W., & Rowson, N. A. (1998). Microwave treatment of minerals-a review. Minerals Engineering, 11(11), 1081-1087. doi:10.1016/s0892-6875(98)00094-6 es_ES
dc.description.references Kingman, S. W. (2006). Recent developments in microwave processing of minerals. International Materials Reviews, 51(1), 1-12. doi:10.1179/174328006x79472 es_ES
dc.description.references Lovás, M., Kováčová, M., Dimitrakis, G., Čuvanová, S., Znamenáčková, I., & Jakabský, Š. (2010). Modeling of microwave heating of andesite and minerals. International Journal of Heat and Mass Transfer, 53(17-18), 3387-3393. doi:10.1016/j.ijheatmasstransfer.2010.03.012 es_ES
dc.description.references S. M. J. Koleini and K.Barani in The development and application of microwave heating , ed. Wenbin C. , IntechOpen , London , 2012 , ch. 4, p. 79 es_ES
dc.description.references A. M. López-Buendía , B.García-Baños , J.Bastida , G.Llorens-Vallés , M. M.Urquiola and J. M.Catalá-Civera , presented at 3GCMEA, Cartagena, Spain, July 2016 es_ES
dc.description.references Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M., & Fernández, J. F. (2019). A step ahead on efficient microwave heating for kaolinite. Applied Clay Science, 168, 237-243. doi:10.1016/j.clay.2018.11.001 es_ES
dc.description.references Kitchen, H. J., Vallance, S. R., Kennedy, J. L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., … Gregory, D. H. (2013). Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chemical Reviews, 114(2), 1170-1206. doi:10.1021/cr4002353 es_ES
dc.description.references Sun, J., Wang, W., & Yue, Q. (2016). Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials, 9(4), 231. doi:10.3390/ma9040231 es_ES
dc.description.references Wu, L., Zhang, Y., Wang, F., Ma, W., Xie, T., & Huang, K. (2019). An On-Line System for High Temperature Dielectric Property Measurement of Microwave-Assisted Sintering Materials. Materials, 12(4), 665. doi:10.3390/ma12040665 es_ES
dc.description.references R. N. Clarke , A. P.Gregory , D.Cannell , M.Patrick , S.Wylie , I.Youngs and G.Hill , Technical Report, Institute of Measurement and Control/National Physical Laboratory, 2003 es_ES
dc.description.references Garcia-Baños, B., Catalá-Civera, J., Peñaranda-Foix, F., Plaza-González, P., & Llorens-Vallés, G. (2016). In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement. Materials, 9(5), 349. doi:10.3390/ma9050349 es_ES
dc.description.references García-Baños, B., Catalá-Civera, J. M., Sánchez, J. R., Navarrete, L., López-Buendía, A. M., & Schmidt, L. (2020). High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating. Metals, 10(5), 693. doi:10.3390/met10050693 es_ES
dc.description.references Catala-Civera, J. M., Canos, A. J., Plaza-Gonzalez, P., Gutierrez, J. D., Garcia-Banos, B., & Penaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905-2914. doi:10.1109/tmtt.2015.2453263 es_ES
dc.description.references Hildyard, R. C., Llana-Funez, S., Wheeler, J., Faulkner, D. R., & Prior, D. J. (2011). Electron Backscatter Diffraction (EBSD) Analysis of Bassanite Transformation Textures and Crystal Structure Produced from Experimentally Deformed and Dehydrated Gypsum. Journal of Petrology, 52(5), 839-856. doi:10.1093/petrology/egr004 es_ES
dc.description.references Azam, S. (2006). Study on the geological and engineering aspects of anhydrite/gypsum transition in the Arabian Gulf coastal deposits. Bulletin of Engineering Geology and the Environment, 66(2), 177-185. doi:10.1007/s10064-006-0053-2 es_ES
dc.description.references Tesárek, P., Drchalová, J., Kolísko, J., Rovnaníková, P., & Černý, R. (2007). Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Construction and Building Materials, 21(7), 1500-1509. doi:10.1016/j.conbuildmat.2006.05.009 es_ES
dc.description.references Singh, M., & Garg, M. (2000). Making of anhydrite cement from waste gypsum. Cement and Concrete Research, 30(4), 571-577. doi:10.1016/s0008-8846(00)00209-x es_ES
dc.description.references Charola, A. E., Pühringer, J., & Steiger, M. (2006). Gypsum: a review of its role in the deterioration of building materials. Environmental Geology, 52(2), 339-352. doi:10.1007/s00254-006-0566-9 es_ES
dc.description.references K. K. Kelley , C. T.Anderson and J. C.Southartd , USD Interior Tech, Paper 625 es_ES
dc.description.references Valimbe, P. (2002). Effects of water content and temperature on the crystallization behavior of FGD scrubber sludge. Fuel, 81(10), 1297-1304. doi:10.1016/s0016-2361(02)00045-5 es_ES
dc.description.references James, A. N., & Lupton, A. R. R. (1978). Gypsum and anhydrite in foundations of hydraulic structures. Géotechnique, 28(3), 249-272. doi:10.1680/geot.1978.28.3.249 es_ES
dc.description.references Ko, S., Olgaard, D. L., & Briegel, U. (1995). The transition from weakening to strengthening in dehydrating gypsum: Evolution of excess pore pressures. Geophysical Research Letters, 22(9), 1009-1012. doi:10.1029/95gl00886 es_ES
dc.description.references Anonymous Mineral Commodity Summaries 2019, Reston, VA, 2019 es_ES
dc.description.references W. Chun , S.Kim and K.Lee , ‘EuroDrying2011’, 2011 es_ES
dc.description.references Kasparaitė, D., Lukošenkinaitė, L., Valančius, Z., Kybartienė, N., & Leškevičienė, V. (2013). Microwave use of gypsum dehydration feasibility study. Chemical Technology, 63(1). doi:10.5755/j01.ct.63.1.4518 es_ES
dc.description.references Boeyens, J. C. A., & Ichharam, V. V. H. (2002). Redetermination of the crystal structure of calcium sulphate dihydrate, CaSO4 · 2H2O. Zeitschrift für Kristallographie - New Crystal Structures, 217(JG), 9-10. doi:10.1524/ncrs.2002.217.jg.9 es_ES
dc.description.references Schofield, P. F., Knight, K. S., & Stretton, I. C. (1996). Thermal expansion of gypsum investigated by neutron powder diffraction. American Mineralogist, 81(7-8), 847-851. doi:10.2138/am-1996-7-807 es_ES
dc.description.references Schmidt, H., Paschke, I., Freyer, D., & Voigt, W. (2011). Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O. Acta Crystallographica Section B Structural Science, 67(6), 467-475. doi:10.1107/s0108768111041759 es_ES
dc.description.references Bezou, C., Nonat, A., Mutin, J.-C., Christensen, A. N., & Lehmann, M. S. (1995). Investigation of the Crystal Structure of γ-CaSO4, CaSO4 · 0.5 H2O, and CaSO4 · 0.6 H2O by Powder Diffraction Methods. Journal of Solid State Chemistry, 117(1), 165-176. doi:10.1006/jssc.1995.1260 es_ES
dc.description.references Christensen, A. N., Olesen, M., Cerenius, Y., & Jensen, T. R. (2008). Formation and Transformation of Five Different Phases in the CaSO4−H2O System: Crystal Structure of the Subhydrate β-CaSO4·0.5H2O and Soluble Anhydrite CaSO4. Chemistry of Materials, 20(6), 2124-2132. doi:10.1021/cm7027542 es_ES
dc.description.references Follner, S., Wolter, A., Preusser, A., Indris, S., Silber, C., & Follner, H. (2002). The Setting Behaviour of α- and β-CaSO4 · 0,5 H2O as a Function of Crystal Structure and Morphology. Crystal Research and Technology, 37(10), 1075-1087. doi:10.1002/1521-4079(200210)37:10<1075::aid-crat1075>3.0.co;2-x es_ES
dc.description.references MORRIS, R. J. (1963). X-ray Diffraction Identification of the Alpha- and Beta-forms of Calcium Sulphate Hemihydrate. Nature, 198(4887), 1298-1299. doi:10.1038/1981298a0 es_ES
dc.description.references Vellmer, C., Middendorf, B., & Singh, N. B. (2006). Hydration of α-hemihydrate in the presence of carboxylic acids. Journal of Thermal Analysis and Calorimetry, 86(3), 721-726. doi:10.1007/s10973-005-7224-4 es_ES
dc.description.references Prieto-Taboada, N., Larrañaga, A., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, M. A., & Madariaga, J. M. (2015). The relevance of the combination of XRD and Raman spectroscopy for the characterization of the CaSO4–H2O system compounds. Microchemical Journal, 122, 102-109. doi:10.1016/j.microc.2015.04.010 es_ES
dc.description.references Sipple, E.-M., Bracconi, P., Dufour, P., & Mutin, J.-C. (2001). Microstructural modifications resulting from the dehydration of gypsum. Solid State Ionics, 141-142, 447-454. doi:10.1016/s0167-2738(01)00755-x es_ES
dc.description.references Carbone, M., Ballirano, P., & Caminiti, R. (2008). Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. European Journal of Mineralogy, 20(4), 621-627. doi:10.1127/0935-1221/2008/0020-1826 es_ES
dc.description.references A. M. López-Buendía , C.Suesta , J. M.Cuevas , M. M.Urquiola and J.Bastida , presented at 12th EMABM, 2009, 443 es_ES
dc.description.references Zhao, Z. M., Wang, C. J., Li, C. Q., & Zhang, X. M. (2013). On Experimental Study of Development Calcined Gypsum from Flue Gas Desulfurization by Microwave Technology. Applied Mechanics and Materials, 368-370, 780-784. doi:10.4028/www.scientific.net/amm.368-370.780 es_ES
dc.description.references Kirfel, A., & Will, G. (1980). Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 36(12), 2881-2890. doi:10.1107/s0567740880010461 es_ES
dc.description.references Gracia, L., Beltrán, A., Errandonea, D., & Andrés, J. (2011). CaSO4 and Its Pressure-Induced Phase Transitions. A Density Functional Theory Study. Inorganic Chemistry, 51(3), 1751-1759. doi:10.1021/ic202056b es_ES
dc.description.references Crichton, W. A., Parise, J. B., Antao, S. M., & Grzechnik, A. (2005). Evidence for monazite-, barite-, and AgMnO4(distorted barite)-type structures of CaSO4at high pressure and temperature. American Mineralogist, 90(1), 22-27. doi:10.2138/am.2005.1654 es_ES
dc.description.references Pedersen, B. F., & Semmingsen, D. (1982). Neutron diffraction refinement of the structure of gypsum, CaSO4.2H2O. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 38(4), 1074-1077. doi:10.1107/s0567740882004993 es_ES
dc.description.references De la Torre, Á. G., López-Olmo, M.-G., Álvarez-Rua, C., García-Granda, S., & Aranda, M. A. G. (2004). Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. Powder Diffraction, 19(3), 240-246. doi:10.1154/1.1725254 es_ES
dc.description.references Hartman, P. (1989). On the unit cell dimensions and bond lengths of anhydrite. European Journal of Mineralogy, 1(5), 721-722. doi:10.1127/ejm/1/5/0721 es_ES
dc.description.references Morikawa, H., Minato, I., Tomita, T., & Iwai, S. (1975). Anhydrite: a refinement. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(8), 2164-2165. doi:10.1107/s0567740875007145 es_ES
dc.description.references Prieto-Taboada, N., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, M. Á., & Madariaga, J. M. (2014). Raman Spectra of the Different Phases in the CaSO4–H2O System. Analytical Chemistry, 86(20), 10131-10137. doi:10.1021/ac501932f es_ES
dc.description.references Antao, S. M. (2011). Crystal-structure analysis of four mineral samples of anhydrite, CaSO4, using synchrotron high-resolution powder X-ray diffraction data. Powder Diffraction, 26(4), 326-330. doi:10.1154/1.3659285 es_ES
dc.description.references Borg, I. Y., & Smith, D. K. (1975). A high pressure polymorph of CaSO4. Contributions to Mineralogy and Petrology, 50(2), 127-133. doi:10.1007/bf00373332 es_ES
dc.description.references Mukhopadhyay, A., Cole, W. T. S., & Saykally, R. J. (2015). The water dimer I: Experimental characterization. Chemical Physics Letters, 633, 13-26. doi:10.1016/j.cplett.2015.04.016 es_ES
dc.description.references Kaatze, U. (1989). Complex permittivity of water as a function of frequency and temperature. Journal of Chemical & Engineering Data, 34(4), 371-374. doi:10.1021/je00058a001 es_ES
dc.description.references Ellison, W. J. (2007). Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0–25THz and the Temperature Range 0–100°C. Journal of Physical and Chemical Reference Data, 36(1), 1-18. doi:10.1063/1.2360986 es_ES
dc.description.references García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F., & Catalá-Civera, J. M. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 9(1). doi:10.1038/s41598-019-47296-0 es_ES
dc.description.references Gutierrez-Cano, J. D., Plaza-Gonzalez, P., Canos, A. J., Garcia-Banos, B., Catala-Civera, J. M., & Penaranda-Foix, F. L. (2020). A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 69(6), 3595-3605. doi:10.1109/tim.2019.2941038 es_ES
dc.description.references Berenblut, B. J., Dawson, P., & Wilkinson, G. R. (1973). A comparison of the Raman spectra of anhydrite (CaSO4) and gypsum (CaSO4).2H2O). Spectrochimica Acta Part A: Molecular Spectroscopy, 29(1), 29-36. doi:10.1016/0584-8539(73)80005-4 es_ES
dc.description.references Simon, B., & Bienfait, M. (1965). Structure et mécanisme de croissance du gypse. Acta Crystallographica, 19(5), 750-756. doi:10.1107/s0365110x65004310 es_ES
dc.description.references Massaro, F. R., Rubbo, M., & Aquilano, D. (2010). Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 1. A Syncretic Strategy to Calculate the Morphology of Crystals. Crystal Growth & Design, 10(7), 2870-2878. doi:10.1021/cg900660v es_ES
dc.description.references Khasanov, R. A., Nizamutdinov, N. M., Khasanova, N. M., Gubaĭdullin, A. T., & Vinokurov, V. M. (2008). Low-temperature dehydration of gypsum single crystals. Crystallography Reports, 53(5), 806-811. doi:10.1134/s1063774508050143 es_ES
dc.description.references W. Smykatz-Kloss , K.Heide and W.Klinke in Handbook of Thermal Analysis and Calorimetry , ed. M. E. Brown and P. K. Gallagher , Elsevier , 2003 , ch. 11, vol. 2, p. 451 es_ES
dc.description.references Carvalho, M. T. M., Leles, M. I. G., & Tubino, R. M. C. (2008). TG and DSC studies on plaster residues as recycled material. Journal of Thermal Analysis and Calorimetry, 91(2), 621-625. doi:10.1007/s10973-006-8169-y es_ES
dc.description.references B. Gacía-Baños , A. M.López-Buendía , C.Suesta , J. M.Catalá-Civera ., J.Jiménez Reinosa and J. F.Fernández , 15th International Conference on Microwave and High Frequency Heating , 2015, Krakow (Poland), p. 107 es_ES
dc.description.references Alford, N. M., Breeze, J., Wang, X., Penn, S. J., Dalla, S., Webb, S. J., … Aupi, X. (2001). Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K. Journal of the European Ceramic Society, 21(15), 2605-2611. doi:10.1016/s0955-2219(01)00324-7 es_ES
dc.description.references Baker-Jarvis, J., & Kim, S. (2012). The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. Journal of Research of the National Institute of Standards and Technology, 117, 1. doi:10.6028/jres.117.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem