Adhikari, S. (2002). Dynamics of Nonviscously Damped Linear Systems. Journal of Engineering Mechanics, 128(3), 328-339. doi:10.1061/(asce)0733-9399(2002)128:3(328)
Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032
Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569
[+]
Adhikari, S. (2002). Dynamics of Nonviscously Damped Linear Systems. Journal of Engineering Mechanics, 128(3), 328-339. doi:10.1061/(asce)0733-9399(2002)128:3(328)
Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032
Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569
Lázaro, M. (2019). Critical damping in nonviscously damped linear systems. Applied Mathematical Modelling, 65, 661-675. doi:10.1016/j.apm.2018.09.011
Nicholson, D. W. (1978). Eigenvalue bounds for damped linear systems. Mechanics Research Communications, 5(3), 147-152. doi:10.1016/0093-6413(78)90049-6
Müller, P. C. (1979). Oscillatory damped linear systems. Mechanics Research Communications, 6(2), 81-85. doi:10.1016/0093-6413(79)90017-x
Inman, D. J., & Andry, A. N. (1980). Some Results on the Nature of Eigenvalues of Discrete Damped Linear Systems. Journal of Applied Mechanics, 47(4), 927-930. doi:10.1115/1.3153815
Barkwell, L., & Lancaster, P. (1992). Overdamped and Gyroscopic Vibrating Systems. Journal of Applied Mechanics, 59(1), 176-181. doi:10.1115/1.2899425
Beskos, D. E., & Boley, B. A. (1980). Critical Damping in Linear Discrete Dynamic Systems. Journal of Applied Mechanics, 47(3), 627-630. doi:10.1115/1.3153744
Papagyri-Beskou, S., & Beskos, D. E. (2002). On critical viscous damping determination in linear discrete dynamic systems. Acta Mechanica, 153(1-2), 33-45. doi:10.1007/bf01177049
Muravyov, A. (1998). FORCED VIBRATION RESPONSES OF A VISCOELASTIC STRUCTURE. Journal of Sound and Vibration, 218(5), 892-907. doi:10.1006/jsvi.1998.1819
Muller, P. (2005). Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not? Journal of Sound and Vibration, 285(1-2), 501-509. doi:10.1016/j.jsv.2004.09.007
Muravyov, A., & Hutton, S. G. (1998). Free Vibration Response Characteristics of a Simple Elasto-Hereditary System. Journal of Vibration and Acoustics, 120(2), 628-632. doi:10.1115/1.2893873
Lázaro, M. (2019). Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems. Mathematics and Mechanics of Solids, 24(12), 3843-3861. doi:10.1177/1081286519858382
Pierro, E. (2020). Damping control in viscoelastic beam dynamics. Journal of Vibration and Control, 26(19-20), 1753-1764. doi:10.1177/1077546320903195
Lázaro, M. (2019). Approximate critical curves in exponentially damped nonviscous systems. Mechanical Systems and Signal Processing, 122, 720-736. doi:10.1016/j.ymssp.2018.12.044
Caughey, T. K., & O’Kelly, M. E. J. (1965). Classical Normal Modes in Damped Linear Dynamic Systems. Journal of Applied Mechanics, 32(3), 583-588. doi:10.1115/1.3627262
Adhikari, S. (2006). Damping modelling using generalized proportional damping. Journal of Sound and Vibration, 293(1-2), 156-170. doi:10.1016/j.jsv.2005.09.034
Adhiakri, S. (2001). Classical Normal Modes in Nonviscously Damped Linear Systems. AIAA Journal, 39(5), 978-980. doi:10.2514/2.1409
Lewandowski, R., & Przychodzki, M. (2018). Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers. Archive of Applied Mechanics, 88(10), 1695-1711. doi:10.1007/s00419-018-1394-6
Litewka, P., & Lewandowski, R. (2020). Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature. Computers & Structures, 229, 106181. doi:10.1016/j.compstruc.2019.106181
Biot, M. A. (1954). Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena. Journal of Applied Physics, 25(11), 1385-1391. doi:10.1063/1.1721573
ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 43-61. doi:10.1006/jsvi.2000.3391
ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 2, NON-VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 63-88. doi:10.1006/jsvi.2000.3392
Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379
Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4
[-]