- -

Critical relationships in nonviscous systems with proportional damping

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Critical relationships in nonviscous systems with proportional damping

Show full item record

Lázaro, M.; García-Raffi, LM. (2020). Critical relationships in nonviscous systems with proportional damping. Journal of Sound and Vibration. 485:1-14. https://doi.org/10.1016/j.jsv.2020.115538

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166847

Files in this item

Item Metadata

Title: Critical relationships in nonviscous systems with proportional damping
Author: Lázaro, Mario García-Raffi, L. M.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Issued date:
Abstract:
[EN] Materials with time-dependent dissipative behavior currently play an important role in the design of new mechanisms for vibration control in civil, automotive, aeronautical and mechanical engineering. Damping forces ...[+]
Subjects: Viscoelastic systems , Nonviscous systems , Critical damping , Eigenvalues , Proportional damping
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Sound and Vibration. (issn: 0022-460X )
DOI: 10.1016/j.jsv.2020.115538
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jsv.2020.115538
Thanks:
This research was partially supported by the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire (France).
Type: Artículo

References

Adhikari, S. (2002). Dynamics of Nonviscously Damped Linear Systems. Journal of Engineering Mechanics, 128(3), 328-339. doi:10.1061/(asce)0733-9399(2002)128:3(328)

Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032

Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569 [+]
Adhikari, S. (2002). Dynamics of Nonviscously Damped Linear Systems. Journal of Engineering Mechanics, 128(3), 328-339. doi:10.1061/(asce)0733-9399(2002)128:3(328)

Wagner, N., & Adhikari, S. (2003). Symmetric State-Space Method for a Class of Nonviscously Damped Systems. AIAA Journal, 41(5), 951-956. doi:10.2514/2.2032

Lázaro, M. (2015). Nonviscous Modes of Nonproportionally Damped Viscoelastic Systems. Journal of Applied Mechanics, 82(12). doi:10.1115/1.4031569

Lázaro, M. (2019). Critical damping in nonviscously damped linear systems. Applied Mathematical Modelling, 65, 661-675. doi:10.1016/j.apm.2018.09.011

Nicholson, D. W. (1978). Eigenvalue bounds for damped linear systems. Mechanics Research Communications, 5(3), 147-152. doi:10.1016/0093-6413(78)90049-6

Müller, P. C. (1979). Oscillatory damped linear systems. Mechanics Research Communications, 6(2), 81-85. doi:10.1016/0093-6413(79)90017-x

Inman, D. J., & Andry, A. N. (1980). Some Results on the Nature of Eigenvalues of Discrete Damped Linear Systems. Journal of Applied Mechanics, 47(4), 927-930. doi:10.1115/1.3153815

Barkwell, L., & Lancaster, P. (1992). Overdamped and Gyroscopic Vibrating Systems. Journal of Applied Mechanics, 59(1), 176-181. doi:10.1115/1.2899425

Beskos, D. E., & Boley, B. A. (1980). Critical Damping in Linear Discrete Dynamic Systems. Journal of Applied Mechanics, 47(3), 627-630. doi:10.1115/1.3153744

Papagyri-Beskou, S., & Beskos, D. E. (2002). On critical viscous damping determination in linear discrete dynamic systems. Acta Mechanica, 153(1-2), 33-45. doi:10.1007/bf01177049

Muravyov, A. (1998). FORCED VIBRATION RESPONSES OF A VISCOELASTIC STRUCTURE. Journal of Sound and Vibration, 218(5), 892-907. doi:10.1006/jsvi.1998.1819

Muller, P. (2005). Are the eigensolutions of a 1-d.o.f. system with viscoelastic damping oscillatory or not? Journal of Sound and Vibration, 285(1-2), 501-509. doi:10.1016/j.jsv.2004.09.007

Muravyov, A., & Hutton, S. G. (1998). Free Vibration Response Characteristics of a Simple Elasto-Hereditary System. Journal of Vibration and Acoustics, 120(2), 628-632. doi:10.1115/1.2893873

Lázaro, M. (2019). Exact determination of critical damping in multiple exponential kernel-based viscoelastic single-degree-of-freedom systems. Mathematics and Mechanics of Solids, 24(12), 3843-3861. doi:10.1177/1081286519858382

Pierro, E. (2020). Damping control in viscoelastic beam dynamics. Journal of Vibration and Control, 26(19-20), 1753-1764. doi:10.1177/1077546320903195

Lázaro, M. (2019). Approximate critical curves in exponentially damped nonviscous systems. Mechanical Systems and Signal Processing, 122, 720-736. doi:10.1016/j.ymssp.2018.12.044

Caughey, T. K., & O’Kelly, M. E. J. (1965). Classical Normal Modes in Damped Linear Dynamic Systems. Journal of Applied Mechanics, 32(3), 583-588. doi:10.1115/1.3627262

Adhikari, S. (2006). Damping modelling using generalized proportional damping. Journal of Sound and Vibration, 293(1-2), 156-170. doi:10.1016/j.jsv.2005.09.034

Adhiakri, S. (2001). Classical Normal Modes in Nonviscously Damped Linear Systems. AIAA Journal, 39(5), 978-980. doi:10.2514/2.1409

Lewandowski, R., & Przychodzki, M. (2018). Approximate method for temperature-dependent characteristics of structures with viscoelastic dampers. Archive of Applied Mechanics, 88(10), 1695-1711. doi:10.1007/s00419-018-1394-6

Litewka, P., & Lewandowski, R. (2020). Dynamic characteristics of viscoelastic Mindlin plates with influence of temperature. Computers & Structures, 229, 106181. doi:10.1016/j.compstruc.2019.106181

Biot, M. A. (1954). Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena. Journal of Applied Physics, 25(11), 1385-1391. doi:10.1063/1.1721573

ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 43-61. doi:10.1006/jsvi.2000.3391

ADHIKARI, S., & WOODHOUSE, J. (2001). IDENTIFICATION OF DAMPING: PART 2, NON-VISCOUS DAMPING. Journal of Sound and Vibration, 243(1), 63-88. doi:10.1006/jsvi.2000.3392

Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379

Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record