- -

Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity

Mostrar el registro completo del ítem

Nguyen, D.; Vallejo-Castro, L.; Bohata, J.; Ortega Tamarit, B.; Ghassemlooy, Z.; Zvanovec, S. (2020). Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity. Optics Communications. 475:1-9. https://doi.org/10.1016/j.optcom.2020.126281

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166850

Ficheros en el ítem

Metadatos del ítem

Título: Wideband QAM-over-SMF/turbulent FSO downlinks in a PON architecture for ubiquitous connectivity
Autor: Nguyen, Dong-Nhat Vallejo-Castro, Luis Bohata, Jan Ortega Tamarit, Beatriz Ghassemlooy, Zabih Zvanovec, Stanislav
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] We propose and investigate for the first time a seamless millimeter-wave (mmW) radio-over-fiber (RoF) and radio-over-free-space optics (FSO)-based downlink for use in a passive optical network architecture using 4-, ...[+]
Palabras clave: Free-space optical communication , Fiber-FSO integrated system , Atmospheric turbulence , Millimeter-wave
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Optics Communications. (issn: 0030-4018 )
DOI: 10.1016/j.optcom.2020.126281
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.optcom.2020.126281
Código del Proyecto:
info:eu-repo/grantAgreement/COST//CA16220/EU/European Network for High Performance Integrated Microwave Photonics/
info:eu-repo/grantAgreement/MSMT//CZ.02.2.69%2F0.0%2F0.0%2F16_027%2F0008465/
info:eu-repo/grantAgreement/CVUT//SGS20%2F166%2FOHK3%2F3T%2F13/
Agradecimientos:
This work was supported in part by the Ministry of Education, Youth and Sports of Czech Republic (CZ.02.2.69/0.0/0.0/16_027/0008465), and in part by European Cooperation in Science and Technology COST CA16220 and CTU project ...[+]
Tipo: Artículo

References

Li, X., Yu, J., Zhang, Z., Xiao, J., & Chang, G.-K. (2015). Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM. Optics Communications, 349, 6-10. doi:10.1016/j.optcom.2015.03.044

Kawanishi, T. (2019). THz and Photonic Seamless Communications. Journal of Lightwave Technology, 37(7), 1671-1679. doi:10.1109/jlt.2019.2897042

Li, X., Yu, J., & Chang, G.-K. (2020). Photonics-Aided Millimeter-Wave Technologies for Extreme Mobile Broadband Communications in 5G. Journal of Lightwave Technology, 38(2), 366-378. doi:10.1109/jlt.2019.2935137 [+]
Li, X., Yu, J., Zhang, Z., Xiao, J., & Chang, G.-K. (2015). Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM. Optics Communications, 349, 6-10. doi:10.1016/j.optcom.2015.03.044

Kawanishi, T. (2019). THz and Photonic Seamless Communications. Journal of Lightwave Technology, 37(7), 1671-1679. doi:10.1109/jlt.2019.2897042

Li, X., Yu, J., & Chang, G.-K. (2020). Photonics-Aided Millimeter-Wave Technologies for Extreme Mobile Broadband Communications in 5G. Journal of Lightwave Technology, 38(2), 366-378. doi:10.1109/jlt.2019.2935137

Wang, H.-Y., Cheng, C.-H., Tsai, C.-T., Chi, Y.-C., & Lin, G.-R. (2019). 28-GHz Wireless Carrier Heterodyned From Orthogonally Polarized Tri-Color Laser Diode for Fading-Free Long-Reach MMWoF. Journal of Lightwave Technology, 37(13), 3388-3400. doi:10.1109/jlt.2019.2916787

Khalighi, M. A., & Uysal, M. (2014). Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. doi:10.1109/comst.2014.2329501

. KORUZA Transceivers, [Online]. Available: http://www.koruza.net/.

Dat, P. T., Bekkali, A., Kazaura, K., Wakamori, K., Suzuki, T., Matsumoto, M., … Komaki, S. (2009). Studies on characterizing the transmission of RF signals over a turbulent FSO link. Optics Express, 17(10), 7731. doi:10.1364/oe.17.007731

Y. Alfadhli, et al. Real-time FPGA demonstration of hybrid bi-directional MMW and FSO fronthaul architecture, in: 2019 Optical Fiber Communications Conference and Exhibition, OFC 2019 - Proceedings, 2019, p. W2A.39.

P.T. Dat, A. Kanno, K. Inagaki, T. Umezawa, N. Yamamoto, T. Kawanishi, Hybrid optical wireless-mmWave: ultra high-speed indoor communications for beyond 5G, in: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, 2019, pp. 1003–1004.

Esmail, M. A., Ragheb, A., Fathallah, H., & Alouini, M.-S. (2017). Investigation and Demonstration of High Speed Full-Optical Hybrid FSO/Fiber Communication System Under Light Sand Storm Condition. IEEE Photonics Journal, 9(1), 1-12. doi:10.1109/jphot.2016.2641741

Nguyen, D.-N., Bohata, J., Komanec, M., Zvanovec, S., Ortega, B., & Ghassemlooy, Z. (2019). Seamless 25 GHz Transmission of LTE 4/16/64-QAM Signals Over Hybrid SMF/FSO and Wireless Link. Journal of Lightwave Technology, 37(24), 6040-6047. doi:10.1109/jlt.2019.2945588

Vallejo, L., Komanec, M., Ortega, B., Bohata, J., Nguyen, D.-N., Zvanovec, S., & Almenar, V. (2020). Impact of Thermal-Induced Turbulent Distribution Along FSO Link on Transmission of Photonically Generated mmW Signals in the Frequency Range 26–40 GHz. IEEE Photonics Journal, 12(1), 1-9. doi:10.1109/jphot.2019.2959227

Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2018). Toward an Efficient C-RAN Optical Fronthaul for the Future Networks: A Tutorial on Technologies, Requirements, Challenges, and Solutions. IEEE Communications Surveys & Tutorials, 20(1), 708-769. doi:10.1109/comst.2017.2773462

N. Iiyama, S.-Y. Kim, T. Shimada, S. Kimura, N. Yoshimoto, Co-existent downstream scheme between OOK and QAM signals in an optical access network using software-defined technology, in: OFC/NFOEC 2012 - Optical Fiber Communication and the National Fiber Optic Engineers Conference, vol. 1, 2012, p. JTh2A.53.

Yeh, C.-H., Lin, W.-P., Luo, C.-M., Xie, Y.-R., Chang, Y.-J., & Chow, C.-W. (2019). Utilizing Single Lightwave for Delivering Baseband/FSO/MMW Traffics Simultaneously in PON Architecture. IEEE Access, 7, 138927-138931. doi:10.1109/access.2019.2940898

Van Veen, D. T., Houtsma, V. E., Gnauck, A. H., & Iannone, P. (2015). Demonstration of 40-Gb/s TDM-PON Over 42-km With 31 dB Optical Power Budget Using an APD-Based Receiver. Journal of Lightwave Technology, 33(8), 1675-1680. doi:10.1109/jlt.2015.2399271

Rodríguez, S., Rommel, S., Vegas Olmos, J. J., & Monroy, I. T. (2017). Reconfigurable radio access unit to dynamically distribute W-band signals in 5G wireless access networks. Optical Switching and Networking, 24, 21-24. doi:10.1016/j.osn.2016.10.002

Jianjun Yu, Zhensheng Jia, Yi, L., Su, Y., Gee-Kung Chang, & Ting Wang. (2006). Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photonics Technology Letters, 18(1), 265-267. doi:10.1109/lpt.2005.862006

Ma, J., Yu, J., Yu, C., Xin, X., Zeng, J., & Chen, L. (2007). Fiber Dispersion Influence on Transmission of the Optical Millimeter-Waves Generated Using LN-MZM Intensity Modulation. Journal of Lightwave Technology, 25(11), 3244-3256. doi:10.1109/jlt.2007.907794

Wang, Y., Yu, J., Li, X., Xu, Y., Chi, N., & Chang, G.-K. (2015). Photonic Vector Signal Generation Employing a Single-Drive MZM-Based Optical Carrier Suppression Without Precoding. Journal of Lightwave Technology, 33(24), 5235-5241. doi:10.1109/jlt.2015.2499042

Karinou, F., Stojanovic, N., Daly, A., Neumeyr, C., & Ortsiefer, M. (2016). 1.55-μm Long-Wavelength VCSEL-Based Optical Interconnects for Short-Reach Networks. Journal of Lightwave Technology, 34(12), 2897-2904. doi:10.1109/jlt.2015.2505359

Almonacil, S., Jenneve, P., Ramantanis, P., & Layec, P. (2018). A Novel Constellation Phase Rotation Method to Reduce Transmitter Noise in Metro Links. IEEE Photonics Technology Letters, 30(16), 1459-1462. doi:10.1109/lpt.2018.2853645

Li, L., Zhang, R., Liao, P., Cao, Y., Song, H., Zhao, Y., … Willner, A. E. (2019). Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization. Optics Letters, 44(21), 5181. doi:10.1364/ol.44.005181

Kanno, A., Dat, P. T., Kuri, T., Hosako, I., Kawanishi, T., Yoshida, Y., … Kitayama, K. (2012). Coherent Radio-Over-Fiber and Millimeter-Wave Radio Seamless Transmission System for Resilient Access Networks. IEEE Photonics Journal, 4(6), 2196-2204. doi:10.1109/jphot.2012.2228182

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem