Mostrar el registro sencillo del ítem
dc.contributor.author | Perez-Benito, Francisco Javier | es_ES |
dc.contributor.author | Garcia-Gomez, Juan M. | es_ES |
dc.contributor.author | NAVARRO PARDO, ESPERANZA | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.date.accessioned | 2021-05-28T03:32:46Z | |
dc.date.available | 2021-05-28T03:32:46Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166901 | |
dc.description.abstract | [EN] Deep neural networks (DNNs) have emerged as a state-of-the-art tool in very different research fields due to its adaptive power to the decision space since they do not presuppose any linear relationship between data. Some of the main disadvantages of these trending models are that the choice of the network underlying architecture profoundly influences the performance of the model and that the architecture design requires prior knowledge of the field of study. The use of questionnaires is hugely extended in social/behavioral sciences. The main contribution of this work is to automate the process of a DNN architecture design by using an agglomerative hierarchical algorithm that mimics the conceptual structure of such surveys. Although the train had regression purposes, it is easily convertible to deal with classification tasks. Our proposed methodology will be tested with a database containing socio-demographic data and the responses to five psychometric Likert scales related to the prediction of happiness. These scales have been already used to design a DNN architecture based on the subdimension of the scales. We show that our new network configurations outperform the previous existing DNN architectures. | es_ES |
dc.description.sponsorship | The authors thank the support of the project Analysis, quality, and variability of medical data funded by Universitat Politècnica de València. JMGG and JAC acknowledge the support of the H2020 project CrowdHealth (Collective Wisdom Driving Public Health Policies - 727560) funded by the European Comission. JMGG acknowledge and to the In Advance project (Patient-Centred Pathways of Early Palliative Care, Supportive Ecosystems and Appraisal Standard - 825750) funded by the European Comission, too. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Automatic architecture | es_ES |
dc.subject | Community detection | es_ES |
dc.subject | Community-detection deep neural network (CD-DNN) | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Happiness | es_ES |
dc.subject | Network science | es_ES |
dc.subject | Psychometric scales | es_ES |
dc.subject | Regression | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.6567 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/727560/EU/Collective wisdom driving public health policies/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825750/EU/Patient-centred pathways of early palliative care, supportive ecosystems and appraisal standard/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Perez-Benito, FJ.; Garcia-Gomez, JM.; Navarro Pardo, E.; Conejero, JA. (2020). Community detection-based deep neural network architectures: A fully automated framework based on Likert-scale data. Mathematical Methods in the Applied Sciences. 43(14):8290-8301. https://doi.org/10.1002/mma.6567 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.6567 | es_ES |
dc.description.upvformatpinicio | 8290 | es_ES |
dc.description.upvformatpfin | 8301 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\417286 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539 | es_ES |
dc.description.references | Antonov, V., Tarkhov, D., & Vasilyev, A. (2018). Unified approach to constructing the neural network models of real objects. Part 1. Mathematical Methods in the Applied Sciences, 41(18), 9244-9251. doi:10.1002/mma.5205 | es_ES |
dc.description.references | Arifovic, J., & Gençay, R. (2001). Using genetic algorithms to select architecture of a feedforward artificial neural network. Physica A: Statistical Mechanics and its Applications, 289(3-4), 574-594. doi:10.1016/s0378-4371(00)00479-9 | es_ES |
dc.description.references | IslamB‐U BaharudinZ RazaM‐Q NallagowndenP.Optimization of neural network architecture using genetic algorithm for load forecasting. In: 5th International Conference on Intelligent and Advanced Systems (ICIAS) 2014;2014:1‐6. | es_ES |
dc.description.references | KoutníkJ SchmidhuberJ GomezF.Evolving deep unsupervised convolutional networks for vision‐based reinforcement learning. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation ACM;2014:541‐548. | es_ES |
dc.description.references | VidnerováP NerudaR.Evolving keras architectures for sensor data analysis Federated Conference on Computer Science and Information Systems (FedCSIS) 2017IEEE;2017:109‐112. | es_ES |
dc.description.references | Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. doi:10.1103/revmodphys.74.47 | es_ES |
dc.description.references | Newman, M., Barabási, A.-L., & Watts, D. J. (2011). The Structure and Dynamics of Networks. doi:10.1515/9781400841356 | es_ES |
dc.description.references | Albert, R., Jeong, H., & Barabási, A.-L. (1999). Diameter of the World-Wide Web. Nature, 401(6749), 130-131. doi:10.1038/43601 | es_ES |
dc.description.references | Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B, 4(2), 131-134. doi:10.1007/s100510050359 | es_ES |
dc.description.references | Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574. doi:10.1073/pnas.061034498 | es_ES |
dc.description.references | BarabásiA‐L.Network medicine ‐ from obesity to the diseasom:Mass Medical Soc;2007. | es_ES |
dc.description.references | Jian, F., & Dandan, S. (2016). Complex Network Theory and Its Application Research on P2P Networks. Applied Mathematics and Nonlinear Sciences, 1(1), 45-52. doi:10.21042/amns.2016.1.00004 | es_ES |
dc.description.references | FortunatoS CastellanoC.Community structure in graphs. In: Computational complexity;2012:490‐512. | es_ES |
dc.description.references | Kernighan, B. W., & Lin, S. (1970). An Efficient Heuristic Procedure for Partitioning Graphs. Bell System Technical Journal, 49(2), 291-307. doi:10.1002/j.1538-7305.1970.tb01770.x | es_ES |
dc.description.references | Scott, J. (2017). Social Network Analysis. doi:10.4135/9781529716597 | es_ES |
dc.description.references | Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences, 97(21), 11149-11152. doi:10.1073/pnas.200327197 | es_ES |
dc.description.references | Marchiori, M., & Latora, V. (2000). Harmony in the small-world. Physica A: Statistical Mechanics and its Applications, 285(3-4), 539-546. doi:10.1016/s0378-4371(00)00311-3 | es_ES |
dc.description.references | Luo, W., Lu, N., Ni, L., Zhu, W., & Ding, W. (2020). Local community detection by the nearest nodes with greater centrality. Information Sciences, 517, 377-392. doi:10.1016/j.ins.2020.01.001 | es_ES |
dc.description.references | YanardagP VishwanathanS‐V‐N.Deep graph kernels. In: Proceedings of the 21th acm sigkdd international conference on knowledge discovery and data mining;2015:1365‐1374. | es_ES |
dc.description.references | LiJ ZhangH HanZ RongY ChengH HuangJ.Adversarial attack on community detection by hiding individuals. In: Proceedings of the web conference 2020;2020:917‐927. | es_ES |
dc.description.references | Khodayar, M., & Wang, J. (2019). Spatio-Temporal Graph Deep Neural Network for Short-Term Wind Speed Forecasting. IEEE Transactions on Sustainable Energy, 10(2), 670-681. doi:10.1109/tste.2018.2844102 | es_ES |
dc.description.references | Pérez-Benito, F. J., Villacampa-Fernández, P., Conejero, J. A., García-Gómez, J. M., & Navarro-Pardo, E. (2019). A happiness degree predictor using the conceptual data structure for deep learning architectures. Computer Methods and Programs in Biomedicine, 168, 59-68. doi:10.1016/j.cmpb.2017.11.004 | es_ES |
dc.description.references | Spector, P. (1992). Summated Rating Scale Construction. doi:10.4135/9781412986038 | es_ES |
dc.description.references | Cacioppo, J. T., & Berntson, G. G. (1994). Relationship between attitudes and evaluative space: A critical review, with emphasis on the separability of positive and negative substrates. Psychological Bulletin, 115(3), 401-423. doi:10.1037/0033-2909.115.3.401 | es_ES |
dc.description.references | Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2). doi:10.1103/physreve.69.026113 | es_ES |
dc.description.references | Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6). doi:10.1103/physreve.70.066111 | es_ES |
dc.description.references | Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. doi:10.1088/1742-5468/2008/10/p10008 | es_ES |
dc.description.references | Arenas, A., Duch, J., Fernández, A., & Gómez, S. (2007). Size reduction of complex networks preserving modularity. New Journal of Physics, 9(6), 176-176. doi:10.1088/1367-2630/9/6/176 | es_ES |
dc.description.references | Traag, V. A. (2015). Faster unfolding of communities: Speeding up the Louvain algorithm. Physical Review E, 92(3). doi:10.1103/physreve.92.032801 | es_ES |
dc.description.references | HagbergAric SwartPieter S ChultDaniel.Exploring network structure dynamics and function using networkx Los Alamos National Lab.(LANL) Los Alamos NM (United States);2008. | es_ES |
dc.description.references | AbadiM BarhamP ChenJ et al.Tensorflow: a system for large‐scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16);2016:265‐283. | es_ES |
dc.description.references | Joseph, S., Linley, P. A., Harwood, J., Lewis, C. A., & McCollam, P. (2004). Rapid assessment of well-being: The Short Depression-Happiness Scale (SDHS). Psychology and Psychotherapy: Theory, Research and Practice, 77(4), 463-478. doi:10.1348/1476083042555406 | es_ES |
dc.description.references | Carver, C. S. (1997). You want to measure coping but your protocol’ too long: Consider the brief cope. International Journal of Behavioral Medicine, 4(1), 92-100. doi:10.1207/s15327558ijbm0401_6 | es_ES |
dc.description.references | Francis, L. J., Brown, L. B., & Philipchalk, R. (1992). The development of an abbreviated form of the revised Eysenck personality questionnaire (EPQR-A): Its use among students in England, Canada, the U.S.A. and Australia. Personality and Individual Differences, 13(4), 443-449. doi:10.1016/0191-8869(92)90073-x | es_ES |
dc.description.references | Sherbourne, C. D., & Stewart, A. L. (1991). The MOS social support survey. Social Science & Medicine, 32(6), 705-714. doi:10.1016/0277-9536(91)90150-b | es_ES |
dc.description.references | LawrenceS GilesC‐L TsoiA‐C.Lessons in neural network training: overfitting may be harder than expected. In: AAAI/IAAI;1997:540‐545. | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |