- -

Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Igual, Carles es_ES
dc.contributor.author Camacho-García, Andrés es_ES
dc.contributor.author Bernabeu Soler, Enrique Jorge es_ES
dc.contributor.author Igual García, Jorge es_ES
dc.date.accessioned 2021-06-03T03:31:44Z
dc.date.available 2021-06-03T03:31:44Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167198
dc.description.abstract [EN] New upper limb prostheses controllers are continuously being proposed in the literature. However, most of the prostheses commonly used in the real world are based on very old basic controllers. One reason to explain this reluctance to change is the lack of robustness. Traditional controllers have been validated by many users and years, so the introduction of a new controller paradigm requires a lot of strong evidence of a robust behavior. In this work, we approach the robustness against donning/doffing and arm position for recently proposed linear filter adaptive controllers based on myoelectric signals. The adaptive approach allows to introduce some feedback in a natural way in real time in the human-machine collaboration, so it is not so sensitive to input signals changes due to donning/doffing and arm movements. The average completion rate and path efficiency obtained for eight able-bodied subjects donning/doffing five times in four days is 95.83% and 84.19%, respectively, and for four participants using different arm positions is 93.84% and 88.77%, with no statistically significant difference in the results obtained for the different conditions. All these characteristics make the adaptive linear regression a potential candidate for future real world prostheses controllers. es_ES
dc.description.sponsorship This work is partially supported by Ministerio de Educacion, Cultura y Deporte (Spain) under grant FPU15/02870. The authors would like to thank Lucas Parra for the Myo device and Janne M. Hahne for discussions about the subject of the paper. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Linear filtering es_ES
dc.subject Prostheses control es_ES
dc.subject Biomedical engineering es_ES
dc.subject Rehabilitation es_ES
dc.subject Myoelectric signals es_ES
dc.subject Adaptive filters es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10082892 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F02870/ES/FPU15%2F02870/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A34/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Igual, C.; Camacho-García, A.; Bernabeu Soler, EJ.; Igual García, J. (2020). Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control. Applied Sciences. 10(8):1-19. https://doi.org/10.3390/app10082892 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10082892 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\408972 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana es_ES
dc.description.references Esquenazi, A. (2004). Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration. Disability and Rehabilitation, 26(14-15), 831-836. doi:10.1080/09638280410001708850 es_ES
dc.description.references Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422-429. doi:10.1016/j.apmr.2007.11.005 es_ES
dc.description.references Igual, C., Pardo, L. A., Hahne, J., & Igual, J. M. (2019). Myoelectric Control for Upper Limb Prostheses. Electronics, 8(11), 1244. doi:10.3390/electronics8111244 es_ES
dc.description.references Biddiss, E., & Chau, T. (2007). Upper-Limb Prosthetics. American Journal of Physical Medicine & Rehabilitation, 86(12), 977-987. doi:10.1097/phm.0b013e3181587f6c es_ES
dc.description.references Biddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment. Prosthetics & Orthotics International, 31(3), 236-257. doi:10.1080/03093640600994581 es_ES
dc.description.references Davidson, J. (2002). A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. Journal of Hand Therapy, 15(1), 62-70. doi:10.1053/hanthe.2002.v15.01562 es_ES
dc.description.references Datta, D., Selvarajah, K., & Davey, N. (2004). Functional outcome of patients with proximal upper limb deficiency–acquired and congenital. Clinical Rehabilitation, 18(2), 172-177. doi:10.1191/0269215504cr716oa es_ES
dc.description.references Vujaklija, I., Farina, D., & Aszmann, O. (2016). New developments in prosthetic arm systems. Orthopedic Research and Reviews, Volume 8, 31-39. doi:10.2147/orr.s71468 es_ES
dc.description.references Scheme, E. J., Englehart, K. B., & Hudgins, B. S. (2011). Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions. IEEE Transactions on Biomedical Engineering, 58(6), 1698-1705. doi:10.1109/tbme.2011.2113182 es_ES
dc.description.references Englehart, K., & Hudgins, B. (2003). A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 50(7), 848-854. doi:10.1109/tbme.2003.813539 es_ES
dc.description.references Parker, P., Englehart, K., & Hudgins, B. (2006). Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16(6), 541-548. doi:10.1016/j.jelekin.2006.08.006 es_ES
dc.description.references Fougner, A., Stavdahl, Ø., Kyberd, P. J., Losier, Y. G., & Parker, P. A. (2012). Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control—A Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 663-677. doi:10.1109/tnsre.2012.2196711 es_ES
dc.description.references Resnik, L., Huang, H. (Helen), Winslow, A., Crouch, D. L., Zhang, F., & Wolk, N. (2018). Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0361-3 es_ES
dc.description.references Sartori, M., Durandau, G., Došen, S., & Farina, D. (2018). Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. Journal of Neural Engineering, 15(6), 066026. doi:10.1088/1741-2552/aae26b es_ES
dc.description.references Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198), 1098-1101. doi:10.1038/nature06996 es_ES
dc.description.references Amsuess, S., Vujaklija, I., Goebel, P., Roche, A. D., Graimann, B., Aszmann, O. C., & Farina, D. (2016). Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 744-753. doi:10.1109/tnsre.2015.2454240 es_ES
dc.description.references Kuiken, T. A., Miller, L. A., Turner, K., & Hargrove, L. J. (2016). A Comparison of Pattern Recognition Control and Direct Control of a Multiple Degree-of-Freedom Transradial Prosthesis. IEEE Journal of Translational Engineering in Health and Medicine, 4, 1-8. doi:10.1109/jtehm.2016.2616123 es_ES
dc.description.references Phinyomark, A., N. Khushaba, R., & Scheme, E. (2018). Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors, 18(5), 1615. doi:10.3390/s18051615 es_ES
dc.description.references Asghari Oskoei, M., & Hu, H. (2007). Myoelectric control systems—A survey. Biomedical Signal Processing and Control, 2(4), 275-294. doi:10.1016/j.bspc.2007.07.009 es_ES
dc.description.references Spanias, J. A., Perreault, E. J., & Hargrove, L. J. (2016). Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(2), 226-234. doi:10.1109/tnsre.2015.2413393 es_ES
dc.description.references Castellini, C., & van der Smagt, P. (2008). Surface EMG in advanced hand prosthetics. Biological Cybernetics, 100(1), 35-47. doi:10.1007/s00422-008-0278-1 es_ES
dc.description.references Ameri, A., Akhaee, M. A., Scheme, E., & Englehart, K. (2019). Regression convolutional neural network for improved simultaneous EMG control. Journal of Neural Engineering, 16(3), 036015. doi:10.1088/1741-2552/ab0e2e es_ES
dc.description.references Hahne, J. M., Biebmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F. C., … Parra, L. C. (2014). Linear and Nonlinear Regression Techniques for Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 269-279. doi:10.1109/tnsre.2014.2305520 es_ES
dc.description.references Ameri, A., Scheme, E. J., Kamavuako, E. N., Englehart, K. B., & Parker, P. A. (2014). Real-Time, Simultaneous Myoelectric Control Using Force and Position-Based Training Paradigms. IEEE Transactions on Biomedical Engineering, 61(2), 279-287. doi:10.1109/tbme.2013.2281595 es_ES
dc.description.references Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., … Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164-171. doi:10.1038/nature04970 es_ES
dc.description.references Interface Prostheses With Classifier-Feedback-Based User Training. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2575-2583. doi:10.1109/tbme.2016.2641584 es_ES
dc.description.references Thomas, N., Ung, G., McGarvey, C., & Brown, J. D. (2019). Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis. Journal of NeuroEngineering and Rehabilitation, 16(1). doi:10.1186/s12984-019-0545-5 es_ES
dc.description.references Guémann, M., Bouvier, S., Halgand, C., Borrini, L., Paclet, F., Lapeyre, E., … de Rugy, A. (2018). Sensory and motor parameter estimation for elbow myoelectric control with vibrotactile feedback. Annals of Physical and Rehabilitation Medicine, 61, e467. doi:10.1016/j.rehab.2018.05.1090 es_ES
dc.description.references Markovic, M., Schweisfurth, M. A., Engels, L. F., Farina, D., & Dosen, S. (2018). Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0422-7 es_ES
dc.description.references Pasquina, P. F., Perry, B. N., Miller, M. E., Ling, G. S. F., & Tsao, J. W. (2015). Recent advances in bioelectric prostheses. Neurology: Clinical Practice, 5(2), 164-170. doi:10.1212/cpj.0000000000000132 es_ES
dc.description.references NING, J., & Dario, F. (2014). Myoelectric control of upper limb prosthesis: current status, challenges and recent advances. Frontiers in Neuroengineering, 7. doi:10.3389/conf.fneng.2014.11.00004 es_ES
dc.description.references Lendaro, E., Mastinu, E., Håkansson, B., & Ortiz-Catalan, M. (2017). Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain. Frontiers in Neurology, 8. doi:10.3389/fneur.2017.00470 es_ES
dc.description.references Mastinu, E., Ortiz-Catalan, M., & Hakansson, B. (2015). Analog front-ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318805 es_ES
dc.description.references BECK, T. W., HOUSH, T. J., CRAMER, J. T., MALEK, M. H., MIELKE, M., HENDRIX, R., & WEIR, J. P. (2008). Electrode Shift and Normalization Reduce the Innervation Zone’s Influence on EMG. Medicine & Science in Sports & Exercise, 40(7), 1314-1322. doi:10.1249/mss.0b013e31816c4822 es_ES
dc.description.references Pasquina, P. F., Evangelista, M., Carvalho, A. J., Lockhart, J., Griffin, S., Nanos, G., … Hankin, D. (2015). First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Journal of Neuroscience Methods, 244, 85-93. doi:10.1016/j.jneumeth.2014.07.016 es_ES
dc.description.references Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., & Stavdahl, Ø. (2011). Resolving the Limb Position Effect in Myoelectric Pattern Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), 644-651. doi:10.1109/tnsre.2011.2163529 es_ES
dc.description.references Hwang, H.-J., Hahne, J. M., & Müller, K.-R. (2017). Real-time robustness evaluation of regression based myoelectric control against arm position change and donning/doffing. PLOS ONE, 12(11), e0186318. doi:10.1371/journal.pone.0186318 es_ES
dc.description.references Young, A. J., Hargrove, L. J., & Kuiken, T. A. (2011). The Effects of Electrode Size and Orientation on the Sensitivity of Myoelectric Pattern Recognition Systems to Electrode Shift. IEEE Transactions on Biomedical Engineering, 58(9), 2537-2544. doi:10.1109/tbme.2011.2159216 es_ES
dc.description.references Prahm, C., Schulz, A., Paaben, B., Schoisswohl, J., Kaniusas, E., Dorffner, G., … Aszmann, O. (2019). Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 956-962. doi:10.1109/tnsre.2019.2907200 es_ES
dc.description.references Cipriani, C., Sassu, R., Controzzi, M., & Carrozza, M. C. (2011). Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: Preliminary study. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6090468 es_ES
dc.description.references Amsuss, S., Paredes, L. P., Rudigkeit, N., Graimann, B., Herrmann, M. J., & Farina, D. (2013). Long term stability of surface EMG pattern classification for prosthetic control. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610327 es_ES
dc.description.references Scheme, E., & Englehart, K. (2011). Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. The Journal of Rehabilitation Research and Development, 48(6), 643. doi:10.1682/jrrd.2010.09.0177 es_ES
dc.description.references Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A. D. C., & Englehart, K. (2010). Examining the adverse effects of limb position on pattern recognition based myoelectric control. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. doi:10.1109/iembs.2010.5627638 es_ES
dc.description.references Dohnalek, P., Gajdos, P., & Peterek, T. (2013). Human activity recognition on raw sensor data via sparse approximation. 2013 36th International Conference on Telecommunications and Signal Processing (TSP). doi:10.1109/tsp.2013.6614027 es_ES
dc.description.references Marasco, P. D., Hebert, J. S., Sensinger, J. W., Shell, C. E., Schofield, J. S., Thumser, Z. C., … Orzell, B. M. (2018). Illusory movement perception improves motor control for prosthetic hands. Science Translational Medicine, 10(432). doi:10.1126/scitranslmed.aao6990 es_ES
dc.description.references Mastinu, E., Doguet, P., Botquin, Y., Hakansson, B., & Ortiz-Catalan, M. (2017). Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant. IEEE Transactions on Biomedical Circuits and Systems, 11(4), 867-877. doi:10.1109/tbcas.2017.2694710 es_ES
dc.description.references Igual, C., Igual, J., Hahne, J. M., & Parra, L. C. (2019). Adaptive Auto-Regressive Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(2), 314-322. doi:10.1109/tnsre.2019.2894464 es_ES
dc.description.references Huang, Y., Englehart, K. B., Hudgins, B., & Chan, A. D. C. (2005). A Gaussian Mixture Model Based Classification Scheme for Myoelectric Control of Powered Upper Limb Prostheses. IEEE Transactions on Biomedical Engineering, 52(11), 1801-1811. doi:10.1109/tbme.2005.856295 es_ES
dc.description.references Hahne, J. M., Dahne, S., Hwang, H.-J., Muller, K.-R., & Parra, L. C. (2015). Concurrent Adaptation of Human and Machine Improves Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(4), 618-627. doi:10.1109/tnsre.2015.2401134 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem