- -

Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Piqueras, P. es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Ruiz-Lucas, María José es_ES
dc.date.accessioned 2021-06-03T03:32:00Z
dc.date.available 2021-06-03T03:32:00Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167202
dc.description.abstract [EN] The earlier activation of the catalytic converters in internal combustion engines is becoming highly challenging due to the reduction in exhaust gas temperature caused by the application of CO2 reduction technologies. In this context, the use of pre-turbine catalysts arises as a potential way to increase the conversion efficiency of the exhaust aftertreatment system. In this work, a small-sized oxidation catalyst consisting of a honeycomb thin-wall metallic substrate was placed upstream of the turbine to benefit from the higher temperature and pressure prior to the turbine expansion. The change in engine performance and emissions in comparison to the baseline configuration are analyzed under driving conditions. As an individual element, the pre-turbine catalyst contributed positively with a relevant increase in the overall CO and HC conversion efficiency. However, its placement produced secondary effects on the engine and baseline aftertreatment response. Although small-sized monoliths are advantageous to minimize the thermal inertia impact on the turbocharger lag, the catalyst cross-section is in trade-off with the additional pressure drop that the monolith causes. As a result, the higher exhaust manifold pressure in pre-turbine pre-catalyst configuration caused a fuel consumption increase higher than 3% while the engine-out CO and HC emissions did around 50%. These increments were not completely offset despite the high pre-turbine pre-catalyst conversion efficiency (>40%) because the partial abatement of the emissions in this device conditioned the performance of the close-coupled oxidation catalyst. es_ES
dc.description.sponsorship This research has been partially supported by FEDER and the Government of Spain through project TRA2016-79185-R and by Universitat Politecnica de Valencia under a grant with reference number FPI-2018-S2-10 to the Ph.D. student Maria Jose Ruiz. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Internal combustion engine es_ES
dc.subject Emissions es_ES
dc.subject Fuel consumption es_ES
dc.subject Efficiency es_ES
dc.subject Aftertreatment es_ES
dc.subject Pre-turbine es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10217714 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2018-S2-10/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Piqueras, P.; De La Morena, J.; Ruiz-Lucas, MJ. (2020). Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions. Applied Sciences. 10(21):1-17. https://doi.org/10.3390/app10217714 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10217714 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\428254 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Serrano, J. R., Novella, R., & Piqueras, P. (2019). Why the Development of Internal Combustion Engines Is Still Necessary to Fight against Global Climate Change from the Perspective of Transportation. Applied Sciences, 9(21), 4597. doi:10.3390/app9214597 es_ES
dc.description.references Road Transport: Reducing CO2 Emissions from Vehicles. European Commissionhttps://ec.europa.eu/clima/policies/transport/vehicles/cars es_ES
dc.description.references Joshi, A. (2020). Review of Vehicle Engine Efficiency and Emissions. SAE Technical Paper Series. doi:10.4271/2020-01-0352 es_ES
dc.description.references Gohil, D. B., Pesyridis, A., & Serrano, J. R. (2020). Overview of Clean Automotive Thermal Propulsion Options for India to 2030. Applied Sciences, 10(10), 3604. doi:10.3390/app10103604 es_ES
dc.description.references Jain, A., Krishnasamy, A., & V, P. (2020). Computational optimization of reactivity controlled compression ignition combustion to achieve high efficiency and clean combustion. International Journal of Engine Research, 22(7), 2213-2232. doi:10.1177/1468087420931730 es_ES
dc.description.references Claßen, J., Pischinger, S., Krysmon, S., Sterlepper, S., Dorscheidt, F., Doucet, M., … Thewes, S. C. (2020). Statistically supported real driving emission calibration: Using cycle generation to provide vehicle-specific and statistically representative test scenarios for Euro 7. International Journal of Engine Research, 21(10), 1783-1799. doi:10.1177/1468087420935221 es_ES
dc.description.references Di Maio, D., Beatrice, C., Fraioli, V., Napolitano, P., Golini, S., & Rutigliano, F. G. (2019). Modeling of Three-Way Catalyst Dynamics for a Compressed Natural Gas Engine during Lean–Rich Transitions. Applied Sciences, 9(21), 4610. doi:10.3390/app9214610 es_ES
dc.description.references Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., … Zhao, H. (2019). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. doi:10.1177/1468087419877990 es_ES
dc.description.references Kawaguchi, A., Wakisaka, Y., Nishikawa, N., Kosaka, H., Yamashita, H., Yamashita, C., … Tomoda, T. (2019). Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. International Journal of Engine Research, 20(7), 805-816. doi:10.1177/1468087419852013 es_ES
dc.description.references Luján, J. M., Serrano, J. R., Piqueras, P., & Diesel, B. (2019). Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature. Applied Energy, 240, 409-423. doi:10.1016/j.apenergy.2019.02.043 es_ES
dc.description.references Arnau, F. J., Martín, J., Pla, B., & Auñón, Á. (2020). Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 22(4), 1196-1213. doi:10.1177/1468087419894804 es_ES
dc.description.references Maniatis, P., Wagner, U., & Koch, T. (2018). A model-based and experimental approach for the determination of suitable variable valve timings for cold start in partial load operation of a passenger car single-cylinder diesel engine. International Journal of Engine Research, 20(1), 141-154. doi:10.1177/1468087418817119 es_ES
dc.description.references Luján, J. M., Bermúdez, V., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation. Energy, 80, 599-613. doi:10.1016/j.energy.2014.05.048 es_ES
dc.description.references Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017 es_ES
dc.description.references Serrano, J. R., Climent, H., Piqueras, P., & Angiolini, E. (2014). Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement. Applied Energy, 132, 507-523. doi:10.1016/j.apenergy.2014.07.043 es_ES
dc.description.references Joergl, V., Keller, P., Weber, O., Mueller-Haas, K., & Konieczny, R. (2008). Influence of Pre Turbo Catalyst Design on Diesel Engine Performance, Emissions and Fuel Economy. SAE International Journal of Fuels and Lubricants, 1(1), 82-95. doi:10.4271/2008-01-0071 es_ES
dc.description.references Serrano, J. R., Bermúdez, V., Piqueras, P., & Angiolini, E. (2017). On the impact of DPF downsizing and cellular geometry on filtration efficiency in pre- and post-turbine placement. Journal of Aerosol Science, 113, 20-35. doi:10.1016/j.jaerosci.2017.07.014 es_ES
dc.description.references Kröcher, O., Elsener, M., Bothien, M.-R., & Dölling, W. (2014). Pre-Turbo Scr - Influence of Pressure on NOx Reduction. MTZ worldwide, 75(4), 46-51. doi:10.1007/s38313-014-0140-x es_ES
dc.description.references Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Assessment by means of gas dynamic modelling of a pre-turbo diesel particulate filter configuration in a turbocharged HSDI diesel engine under full-load transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(9), 1134-1155. doi:10.1177/0954407011402278 es_ES
dc.description.references Payri, F., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Performance Analysis of a Turbocharged Heavy Duty Diesel Engine with a Pre-turbo Diesel Particulate Filter Configuration. SAE International Journal of Engines, 4(2), 2559-2575. doi:10.4271/2011-37-0004 es_ES
dc.description.references Serrano, J. R., Guardiola, C., Piqueras, P., & Angiolini, E. (2014). Analysis of the Aftertreatment Sizing for Pre-Turbo DPF and DOC Exhaust Line Configurations. SAE Technical Paper Series. doi:10.4271/2014-01-1498 es_ES
dc.description.references Klaewkla, R., Arend, M., & F., W. (2011). A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems. Mass Transfer - Advanced Aspects. doi:10.5772/22962 es_ES
dc.description.references Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111 es_ES
dc.description.references Sampara, C. S., Bissett, E. J., & Chmielewski, M. (2007). Global Kinetics for a Commercial Diesel Oxidation Catalyst with Two Exhaust Hydrocarbons. Industrial & Engineering Chemistry Research, 47(2), 311-322. doi:10.1021/ie070813x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem