Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano, J.R. | es_ES |
dc.contributor.author | Piqueras, P. | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.contributor.author | Ruiz-Lucas, María José | es_ES |
dc.date.accessioned | 2021-06-03T03:32:00Z | |
dc.date.available | 2021-06-03T03:32:00Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167202 | |
dc.description.abstract | [EN] The earlier activation of the catalytic converters in internal combustion engines is becoming highly challenging due to the reduction in exhaust gas temperature caused by the application of CO2 reduction technologies. In this context, the use of pre-turbine catalysts arises as a potential way to increase the conversion efficiency of the exhaust aftertreatment system. In this work, a small-sized oxidation catalyst consisting of a honeycomb thin-wall metallic substrate was placed upstream of the turbine to benefit from the higher temperature and pressure prior to the turbine expansion. The change in engine performance and emissions in comparison to the baseline configuration are analyzed under driving conditions. As an individual element, the pre-turbine catalyst contributed positively with a relevant increase in the overall CO and HC conversion efficiency. However, its placement produced secondary effects on the engine and baseline aftertreatment response. Although small-sized monoliths are advantageous to minimize the thermal inertia impact on the turbocharger lag, the catalyst cross-section is in trade-off with the additional pressure drop that the monolith causes. As a result, the higher exhaust manifold pressure in pre-turbine pre-catalyst configuration caused a fuel consumption increase higher than 3% while the engine-out CO and HC emissions did around 50%. These increments were not completely offset despite the high pre-turbine pre-catalyst conversion efficiency (>40%) because the partial abatement of the emissions in this device conditioned the performance of the close-coupled oxidation catalyst. | es_ES |
dc.description.sponsorship | This research has been partially supported by FEDER and the Government of Spain through project TRA2016-79185-R and by Universitat Politecnica de Valencia under a grant with reference number FPI-2018-S2-10 to the Ph.D. student Maria Jose Ruiz. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Internal combustion engine | es_ES |
dc.subject | Emissions | es_ES |
dc.subject | Fuel consumption | es_ES |
dc.subject | Efficiency | es_ES |
dc.subject | Aftertreatment | es_ES |
dc.subject | Pre-turbine | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10217714 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-2018-S2-10/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Serrano, J.; Piqueras, P.; De La Morena, J.; Ruiz-Lucas, MJ. (2020). Influence of Pre-Turbine Small-Sized Oxidation Catalyst on Engine Performance and Emissions under Driving Conditions. Applied Sciences. 10(21):1-17. https://doi.org/10.3390/app10217714 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10217714 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\428254 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Serrano, J. R., Novella, R., & Piqueras, P. (2019). Why the Development of Internal Combustion Engines Is Still Necessary to Fight against Global Climate Change from the Perspective of Transportation. Applied Sciences, 9(21), 4597. doi:10.3390/app9214597 | es_ES |
dc.description.references | Road Transport: Reducing CO2 Emissions from Vehicles. European Commissionhttps://ec.europa.eu/clima/policies/transport/vehicles/cars | es_ES |
dc.description.references | Joshi, A. (2020). Review of Vehicle Engine Efficiency and Emissions. SAE Technical Paper Series. doi:10.4271/2020-01-0352 | es_ES |
dc.description.references | Gohil, D. B., Pesyridis, A., & Serrano, J. R. (2020). Overview of Clean Automotive Thermal Propulsion Options for India to 2030. Applied Sciences, 10(10), 3604. doi:10.3390/app10103604 | es_ES |
dc.description.references | Jain, A., Krishnasamy, A., & V, P. (2020). Computational optimization of reactivity controlled compression ignition combustion to achieve high efficiency and clean combustion. International Journal of Engine Research, 22(7), 2213-2232. doi:10.1177/1468087420931730 | es_ES |
dc.description.references | Claßen, J., Pischinger, S., Krysmon, S., Sterlepper, S., Dorscheidt, F., Doucet, M., … Thewes, S. C. (2020). Statistically supported real driving emission calibration: Using cycle generation to provide vehicle-specific and statistically representative test scenarios for Euro 7. International Journal of Engine Research, 21(10), 1783-1799. doi:10.1177/1468087420935221 | es_ES |
dc.description.references | Di Maio, D., Beatrice, C., Fraioli, V., Napolitano, P., Golini, S., & Rutigliano, F. G. (2019). Modeling of Three-Way Catalyst Dynamics for a Compressed Natural Gas Engine during Lean–Rich Transitions. Applied Sciences, 9(21), 4610. doi:10.3390/app9214610 | es_ES |
dc.description.references | Reitz, R. D., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., … Zhao, H. (2019). IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 21(1), 3-10. doi:10.1177/1468087419877990 | es_ES |
dc.description.references | Kawaguchi, A., Wakisaka, Y., Nishikawa, N., Kosaka, H., Yamashita, H., Yamashita, C., … Tomoda, T. (2019). Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. International Journal of Engine Research, 20(7), 805-816. doi:10.1177/1468087419852013 | es_ES |
dc.description.references | Luján, J. M., Serrano, J. R., Piqueras, P., & Diesel, B. (2019). Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature. Applied Energy, 240, 409-423. doi:10.1016/j.apenergy.2019.02.043 | es_ES |
dc.description.references | Arnau, F. J., Martín, J., Pla, B., & Auñón, Á. (2020). Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 22(4), 1196-1213. doi:10.1177/1468087419894804 | es_ES |
dc.description.references | Maniatis, P., Wagner, U., & Koch, T. (2018). A model-based and experimental approach for the determination of suitable variable valve timings for cold start in partial load operation of a passenger car single-cylinder diesel engine. International Journal of Engine Research, 20(1), 141-154. doi:10.1177/1468087418817119 | es_ES |
dc.description.references | Luján, J. M., Bermúdez, V., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation. Energy, 80, 599-613. doi:10.1016/j.energy.2014.05.048 | es_ES |
dc.description.references | Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017 | es_ES |
dc.description.references | Serrano, J. R., Climent, H., Piqueras, P., & Angiolini, E. (2014). Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement. Applied Energy, 132, 507-523. doi:10.1016/j.apenergy.2014.07.043 | es_ES |
dc.description.references | Joergl, V., Keller, P., Weber, O., Mueller-Haas, K., & Konieczny, R. (2008). Influence of Pre Turbo Catalyst Design on Diesel Engine Performance, Emissions and Fuel Economy. SAE International Journal of Fuels and Lubricants, 1(1), 82-95. doi:10.4271/2008-01-0071 | es_ES |
dc.description.references | Serrano, J. R., Bermúdez, V., Piqueras, P., & Angiolini, E. (2017). On the impact of DPF downsizing and cellular geometry on filtration efficiency in pre- and post-turbine placement. Journal of Aerosol Science, 113, 20-35. doi:10.1016/j.jaerosci.2017.07.014 | es_ES |
dc.description.references | Kröcher, O., Elsener, M., Bothien, M.-R., & Dölling, W. (2014). Pre-Turbo Scr - Influence of Pressure on NOx Reduction. MTZ worldwide, 75(4), 46-51. doi:10.1007/s38313-014-0140-x | es_ES |
dc.description.references | Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Assessment by means of gas dynamic modelling of a pre-turbo diesel particulate filter configuration in a turbocharged HSDI diesel engine under full-load transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(9), 1134-1155. doi:10.1177/0954407011402278 | es_ES |
dc.description.references | Payri, F., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Performance Analysis of a Turbocharged Heavy Duty Diesel Engine with a Pre-turbo Diesel Particulate Filter Configuration. SAE International Journal of Engines, 4(2), 2559-2575. doi:10.4271/2011-37-0004 | es_ES |
dc.description.references | Serrano, J. R., Guardiola, C., Piqueras, P., & Angiolini, E. (2014). Analysis of the Aftertreatment Sizing for Pre-Turbo DPF and DOC Exhaust Line Configurations. SAE Technical Paper Series. doi:10.4271/2014-01-1498 | es_ES |
dc.description.references | Klaewkla, R., Arend, M., & F., W. (2011). A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems. Mass Transfer - Advanced Aspects. doi:10.5772/22962 | es_ES |
dc.description.references | Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111 | es_ES |
dc.description.references | Sampara, C. S., Bissett, E. J., & Chmielewski, M. (2007). Global Kinetics for a Commercial Diesel Oxidation Catalyst with Two Exhaust Hydrocarbons. Industrial & Engineering Chemistry Research, 47(2), 311-322. doi:10.1021/ie070813x | es_ES |