Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-Ubeda, Rodrigo | es_ES |
dc.contributor.author | Zotovic Stanisic, Ranko | es_ES |
dc.contributor.author | Gutiérrez, S. C. | es_ES |
dc.date.accessioned | 2021-06-03T03:32:09Z | |
dc.date.available | 2021-06-03T03:32:09Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167206 | |
dc.description.abstract | [EN] Due to the elasticity of their joints, collaborative robots are seldom used in applications with force control. Besides, the industrial robot controllers are closed and do not allow the user to access the motor torques and other parameters, hindering the possibility of carrying out a customized control. A good alternative to achieve a custom force control is sending the output of the force regulator to the robot controller through motion commands (inner/outer loop control). There are different types of motion commands (e.g., position or velocity). They may be implemented in different ways (Jacobian inverse vs. Jacobian transpose), but this information is usually not available for the user. This article is dedicated to the analysis of the effect of different inner loops and their combination with several external controllers. Two of the most determinant factors found are the type of the inner loop and the stiffness matrix. The theoretical deductions have been experimentally verified on a collaborative robot UR3, allowing us to choose the best behaviour in a polishing operation according to pre-established criteria. | es_ES |
dc.description.sponsorship | The authors are grateful for the financial support of the Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE), to the research work here published. Rodrigo Perez-Ubeda is grateful to the Ph.D. Grant CONICYT PFCHA/DOCTORADO BECAS CHILE/2017-72180157. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Force control | es_ES |
dc.subject | Collaborative robot | es_ES |
dc.subject | Inner/outer loop | es_ES |
dc.subject | Elastic robot | es_ES |
dc.subject | Polishing operation | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10124329 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-81002-R/ES/CONTROL AVANZADO Y APRENDIZAJE DE ROBOTS EN OPERACIONES DE TRANSPORTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//2017-72180157/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Pérez-Ubeda, R.; Zotovic Stanisic, R.; Gutiérrez, SC. (2020). Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement. Applied Sciences. 10(12):1-24. https://doi.org/10.3390/app10124329 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10124329 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\414417 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | es_ES |
dc.description.references | Top Trends Robotics 2020—International Federation of Robotics https://ifr.org/ifr-press-releases/news/top-trends-robotics-2020 | es_ES |
dc.description.references | Gaz, C., Magrini, E., & De Luca, A. (2018). A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics, 55, 234-247. doi:10.1016/j.mechatronics.2018.02.014 | es_ES |
dc.description.references | Iglesias, I., Sebastián, M. A., & Ares, J. E. (2015). Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering, 132, 911-917. doi:10.1016/j.proeng.2015.12.577 | es_ES |
dc.description.references | Perez-Ubeda, R., Gutierrez, S. C., Zotovic, R., & Lluch-Cerezo, J. (2019). Study of the application of a collaborative robot for machining tasks. Procedia Manufacturing, 41, 867-874. doi:10.1016/j.promfg.2019.10.009 | es_ES |
dc.description.references | Spong, M. W. (1989). On the force control problem for flexible joint manipulators. IEEE Transactions on Automatic Control, 34(1), 107-111. doi:10.1109/9.8661 | es_ES |
dc.description.references | Ren, T., Dong, Y., Wu, D., & Chen, K. (2019). Impedance control of collaborative robots based on joint torque servo with active disturbance rejection. Industrial Robot: the international journal of robotics research and application, 46(4), 518-528. doi:10.1108/ir-06-2018-0130 | es_ES |
dc.description.references | Ajoudani, A., Tsagarakis, N. G., & Bicchi, A. (2017). Choosing Poses for Force and Stiffness Control. IEEE Transactions on Robotics, 33(6), 1483-1490. doi:10.1109/tro.2017.2708087 | es_ES |
dc.description.references | Magrini, E., & De Luca, A. (2016). Hybrid force/velocity control for physical human-robot collaboration tasks. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros.2016.7759151 | es_ES |
dc.description.references | Ahmad, S. (1993). Constrained motion (force/position) control of flexible joint robots. IEEE Transactions on Systems, Man, and Cybernetics, 23(2), 374-381. doi:10.1109/21.229451 | es_ES |
dc.description.references | Calanca, A., & Fiorini, P. (2018). Understanding Environment-Adaptive Force Control of Series Elastic Actuators. IEEE/ASME Transactions on Mechatronics, 23(1), 413-423. doi:10.1109/tmech.2018.2790350 | es_ES |
dc.description.references | Oh, S., & Kong, K. (2017). High-Precision Robust Force Control of a Series Elastic Actuator. IEEE/ASME Transactions on Mechatronics, 22(1), 71-80. doi:10.1109/tmech.2016.2614503 | es_ES |
dc.description.references | Yin, H., Li, S., & Wang, H. (2016). Sliding mode position/force control for motion synchronization of a flexible-joint manipulator system with time delay. 2016 35th Chinese Control Conference (CCC). doi:10.1109/chicc.2016.7554329 | es_ES |
dc.description.references | Ma, Z., Hong, G.-S., Ang, M. H., Poo, A.-N., & Lin, W. (2018). A Force Control Method with Positive Feedback for Industrial Finishing Applications. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). doi:10.1109/aim.2018.8452689 | es_ES |
dc.description.references | Huang, L., Ge, S. S., & Lee, T. H. (2006). Position/force control of uncertain constrained flexible joint robots. Mechatronics, 16(2), 111-120. doi:10.1016/j.mechatronics.2005.10.002 | es_ES |
dc.description.references | Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics, 4(3), 273-285. doi:10.1109/3516.789685 | es_ES |
dc.description.references | Winkler, A., & Suchy, J. (2016). Explicit and implicit force control of an industrial manipulator — An experimental summary. 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR). doi:10.1109/mmar.2016.7575081 | es_ES |
dc.description.references | Neranon, P., & Bicker, R. (2016). Force/position control of a robot manipulator for human-robot interaction. Thermal Science, 20(suppl. 2), 537-548. doi:10.2298/tsci151005036n | es_ES |
dc.description.references | Chen, S., Zhang, T., & Zou, Y. (2017). Fuzzy-Sliding Mode Force Control Research on Robotic Machining. Journal of Robotics, 2017, 1-8. doi:10.1155/2017/8128479 | es_ES |
dc.description.references | Lin, H.-I., & Dubey, V. (2018). Design of an Adaptive Force Controlled Robotic Polishing System Using Adaptive Fuzzy-PID. Advances in Intelligent Systems and Computing, 825-836. doi:10.1007/978-3-030-01370-7_64 | es_ES |
dc.description.references | Perez-Vidal, C., Gracia, L., Sanchez-Caballero, S., Solanes, J. E., Saccon, A., & Tornero, J. (2019). Design of a polishing tool for collaborative robotics using minimum viable product approach. International Journal of Computer Integrated Manufacturing, 32(9), 848-857. doi:10.1080/0951192x.2019.1637026 | es_ES |
dc.description.references | Chen, F., Zhao, H., Li, D., Chen, L., Tan, C., & Ding, H. (2019). Contact force control and vibration suppression in robotic polishing with a smart end effector. Robotics and Computer-Integrated Manufacturing, 57, 391-403. doi:10.1016/j.rcim.2018.12.019 | es_ES |
dc.description.references | Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65. doi:10.1016/j.rcim.2017.05.011 | es_ES |
dc.description.references | Xiao, C., Wang, Q., Zhou, X., Xu, Z., Lao, X., & Chen, Y. (2019). Hybrid Force/Position Control Strategy for Electromagnetic based Robotic Polishing Systems. 2019 Chinese Control Conference (CCC). doi:10.23919/chicc.2019.8865183 | es_ES |
dc.description.references | Li, J., Zhang, T., Liu, X., Guan, Y., & Wang, D. (2018). A Survey of Robotic Polishing. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). doi:10.1109/robio.2018.8664890 | es_ES |
dc.description.references | Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., & Dario, P. (2004). Compliance Control for an Anthropomorphic Robot with Elastic Joints: Theory and Experiments. Journal of Dynamic Systems, Measurement, and Control, 127(3), 321-328. doi:10.1115/1.1978911 | es_ES |
dc.description.references | Han, D., Duan, X., Li, M., Cui, T., Ma, A., & Ma, X. (2017). Interaction Control for Manipulator with compliant end-effector based on hybrid position-force control. 2017 IEEE International Conference on Mechatronics and Automation (ICMA). doi:10.1109/icma.2017.8015929 | es_ES |
dc.description.references | Schindlbeck, C., & Haddadin, S. (2015). Unified passivity-based Cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139036 | es_ES |
dc.description.references | Zotovic Stanisic, R., & Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica, 27(7), 1039-1048. doi:10.1017/s0263574709005451 | es_ES |
dc.description.references | Volpe, R., & Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Transactions on Automatic Control, 38(11), 1634-1650. doi:10.1109/9.262033 | es_ES |
dc.description.references | Zeng, G., & Hemami, A. (1997). An overview of robot force control. Robotica, 15(5), 473-482. doi:10.1017/s026357479700057x | es_ES |
dc.description.references | Salisbury, J. (1980). Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. doi:10.1109/cdc.1980.272026 | es_ES |
dc.description.references | Chen, S.-F., & Kao, I. (2000). Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers. The International Journal of Robotics Research, 19(9), 835-847. doi:10.1177/02783640022067201 | es_ES |
dc.description.references | Institute of Robotics and Mechatronics DLR Light Weight Robot III https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-12464/#gallery/29165 | es_ES |