Mostrar el registro sencillo del ítem
dc.contributor.author | Benajes, Jesús | es_ES |
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Monsalve-Serrano, Javier | es_ES |
dc.contributor.author | Martínez-Boggio, Santiago Daniel | es_ES |
dc.date.accessioned | 2021-06-03T03:32:24Z | |
dc.date.available | 2021-06-03T03:32:24Z | |
dc.date.issued | 2020-01-05 | es_ES |
dc.identifier.issn | 1359-4311 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167211 | |
dc.description.abstract | [EN] Hybrid Electric Vehicles (HEVs) can be considered as a potential technology to promote the change from conventional mobility to e-mobility. However, the real benefits in terms of CO2 emissions depend on a great extent on their mode of use, vehicle design and electricity source. On the other hand, in the last few years, advanced combustion modes as Reactivity Controlled Compression Ignition (RCCI) showed great advantages in terms of NOx and soot emissions reduction. This paper has the purpose of assessing, through numerical simulations fed with experimental results, the potential of different hybrid vehicles when used together with a low temperature combustion mode. In particular, the dual-fuel Mild (MHEV), Full (FHEV) and Plug-in (PHEV) hybrid electric vehicles are tested and compared to the original equipment manufacturer (OEM) and the conventional dual-fuel powertrain, both no-Hybrid vehicles. The powertrains are optimized to meet the current European homologation legislation Worldwide Harmonized Light Vehicle Test Procedure (WLTP). After that, a deep analysis is performed in terms of performance and emissions. Lastly, a life-cycle analysis (LCA) is performed to evaluate the real potential of the different technologies. The results show that the PHEV has the highest benefits in terms of fuel consumption and engine-out emissions. With this technology, it is possible to achieve the 50 g/km CO2 target for the PHEVs with a medium battery size (15 kWh), while NOx and soot levels are under the Euro 6 limits. In addition, the RCCI technology shows great benefits to achieve the Euro 6 soot level for the other hybrid platforms. The LCA shows that the PHEVs can achieve 12% reduction of the total CO2 with respect to the FHEVs, and 30% with respect to the no-hybrid diesel platform. | es_ES |
dc.description.sponsorship | The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (PAID-06-18). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Thermal Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Hybrid powertrain | es_ES |
dc.subject | Diesel internal combustion engines | es_ES |
dc.subject | Emissions regulations | es_ES |
dc.subject | Driving cycles | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.applthermaleng.2019.114430 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180148/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Martínez-Boggio, SD. (2020). Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology. Applied Thermal Engineering. 164:1-17. https://doi.org/10.1016/j.applthermaleng.2019.114430 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.applthermaleng.2019.114430 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 164 | es_ES |
dc.relation.pasarela | S\394192 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Rahman, S. M. A., Masjuki, H. H., Kalam, M. A., Abedin, M. J., Sanjid, A., & Sajjad, H. (2013). Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review. Energy Conversion and Management, 74, 171-182. doi:10.1016/j.enconman.2013.05.019 | es_ES |
dc.description.references | Chen, D., Jiang, J., Kim, G.-H., Yang, C., & Pesaran, A. (2016). Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering, 94, 846-854. doi:10.1016/j.applthermaleng.2015.10.015 | es_ES |
dc.description.references | Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080 | es_ES |
dc.description.references | Huda, M., Aziz, M., & Tokimatsu, K. (2019). The future of electric vehicles to grid integration in Indonesia. Energy Procedia, 158, 4592-4597. doi:10.1016/j.egypro.2019.01.749 | es_ES |
dc.description.references | Taljegard, M., Göransson, L., Odenberger, M., & Johnsson, F. (2019). Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study. Applied Energy, 235, 1637-1650. doi:10.1016/j.apenergy.2018.10.133 | es_ES |
dc.description.references | González, L. G., Siavichay, E., & Espinoza, J. L. (2019). Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city. Renewable and Sustainable Energy Reviews, 107, 309-318. doi:10.1016/j.rser.2019.03.017 | es_ES |
dc.description.references | Reijnders, J., Boot, M., & de Goey, P. (2016). Impact of aromaticity and cetane number on the soot-NOx trade-off in conventional and low temperature combustion. Fuel, 186, 24-34. doi:10.1016/j.fuel.2016.08.009 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 | es_ES |
dc.description.references | Xu, H. T., Luo, Z. Q., Wang, N., Qu, Z. G., Chen, J., & An, L. (2019). Experimental study of the selective catalytic reduction after-treatment for the exhaust emission of a diesel engine. Applied Thermal Engineering, 147, 198-204. doi:10.1016/j.applthermaleng.2018.10.067 | es_ES |
dc.description.references | Guan, B., Zhan, R., Lin, H., & Huang, Z. (2014). Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering, 66(1-2), 395-414. doi:10.1016/j.applthermaleng.2014.02.021 | es_ES |
dc.description.references | Mera, Z., Fonseca, N., López, J.-M., & Casanova, J. (2019). Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions. Applied Energy, 242, 1074-1089. doi:10.1016/j.apenergy.2019.03.120 | es_ES |
dc.description.references | Zehni, A., Khoshbakhti Saray, R., & Poorghasemi, K. (2017). Numerical comparison of PCCI combustion and emission of diesel and biodiesel fuels at low load conditions using 3D-CFD models coupled with chemical kinetics. Applied Thermal Engineering, 110, 1483-1499. doi:10.1016/j.applthermaleng.2016.09.056 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 | es_ES |
dc.description.references | García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 | es_ES |
dc.description.references | Huo, Y., Yan, F., & Feng, D. (2018). A hybrid electric vehicle energy optimization strategy by using fueling control in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(3), 517-530. doi:10.1177/0954407017747372 | es_ES |
dc.description.references | Williams, B., Martin, E., Lipman, T., & Kammen, D. (2011). Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California. Energies, 4(3), 435-457. doi:10.3390/en4030435 | es_ES |
dc.description.references | Commission Regulation (EC) No 692/2008 of 18 July 2008 implementing and amending Regulation (EC) No 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial veh, 2008. | es_ES |
dc.description.references | Paffumi, E., De Gennaro, M., & Martini, G. (2018). Alternative utility factor versus the SAE J2841 standard method for PHEV and BEV applications. Transport Policy, 68, 80-97. doi:10.1016/j.tranpol.2018.02.014 | es_ES |
dc.description.references | Xie, S., Hu, X., Liu, T., Qi, S., Lang, K., & Li, H. (2019). Predictive vehicle-following power management for plug-in hybrid electric vehicles. Energy, 166, 701-714. doi:10.1016/j.energy.2018.10.129 | es_ES |
dc.description.references | Rocco, M. V., Casalegno, A., & Colombo, E. (2018). Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses. Applied Energy, 232, 583-597. doi:10.1016/j.apenergy.2018.09.222 | es_ES |
dc.description.references | Plötz, P., Funke, S. Á., & Jochem, P. (2018). The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles. Transportation Research Part A: Policy and Practice, 118, 331-340. doi:10.1016/j.tra.2018.09.018 | es_ES |
dc.description.references | Marmiroli, B., Messagie, M., Dotelli, G., & Van Mierlo, J. (2018). Electricity Generation in LCA of Electric Vehicles: A Review. Applied Sciences, 8(8), 1384. doi:10.3390/app8081384 | es_ES |
dc.description.references | Samaras, C., & Meisterling, K. (2008). Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy. Environmental Science & Technology, 42(9), 3170-3176. doi:10.1021/es702178s | es_ES |
dc.description.references | De Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G., & Venturini, O. J. (2018). Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of Cleaner Production, 203, 444-468. doi:10.1016/j.jclepro.2018.08.236 | es_ES |
dc.description.references | A. Burnham, User Guide for AFLEET Tool 2018, 2018, 45. | es_ES |
dc.description.references | Wang, M., Han, J., Dunn, J. B., Cai, H., & Elgowainy, A. (2012). Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environmental Research Letters, 7(4), 045905. doi:10.1088/1748-9326/7/4/045905 | es_ES |
dc.description.references | Lu, Z., Han, J., Wang, M., Cai, H., Sun, P., Dieffenthaler, D., … Przesmitzki, S. (2016). Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel. SAE International Journal of Fuels and Lubricants, 9(3), 527-545. doi:10.4271/2016-01-2208 | es_ES |
dc.description.references | Argon, A review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs, 2010. | es_ES |
dc.description.references | Millo, F., Ferraro, C. V., & Rolando, L. (2012). Analysis of different control strategies for the simultaneous reduction of CO<SUB align=«right»>2 and NO<SUB align=«right»>x emissions of a diesel hybrid passenger car. International Journal of Vehicle Design, 58(2/3/4), 427. doi:10.1504/ijvd.2012.047393 | es_ES |
dc.description.references | Asghar, M., Bhatti, A. I., Ahmed, Q., & Murtaza, G. (2018). Energy Management Strategy for Atkinson Cycle Engine Based Parallel Hybrid Electric Vehicle. IEEE Access, 6, 28008-28018. doi:10.1109/access.2018.2835395 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010 | es_ES |
dc.description.references | Talibi, M., Hellier, P., Watkinson, M., & Ladommatos, N. (2019). Comparative analysis of H2-diesel co-combustion in a single cylinder engine and a chassis dynamometer vehicle. International Journal of Hydrogen Energy, 44(2), 1239-1252. doi:10.1016/j.ijhydene.2018.11.092 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 | es_ES |
dc.description.references | Bao, R., Avila, V., & Baxter, J. (2017). Effect of 48 V Mild Hybrid System Layout on Powertrain System Efficiency and Its Potential of Fuel Economy Improvement. SAE Technical Paper Series. doi:10.4271/2017-01-1175 | es_ES |
dc.description.references | Liu, Z., Ivanco, A., & Filipi, Z. S. (2016). Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle. SAE International Journal of Alternative Powertrains, 5(2), 249-258. doi:10.4271/2016-01-1166 | es_ES |
dc.description.references | B. Sarlioglu, C.T. Morris, D. Han, S. Li, Benchmarking of electric and hybrid vehicle electric machines, power electronics, and batteries, in: 2015 Intl Aegean Conf. Electr. Mach. Power Electron., IEEE; 2015, p. 519–526. doi:10.1109/OPTIM.2015.7426993. | es_ES |
dc.description.references | Solouk, A., Shakiba-Herfeh, M., Arora, J., & Shahbakhti, M. (2018). Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization. Energy Conversion and Management, 155, 100-115. doi:10.1016/j.enconman.2017.10.073 | es_ES |
dc.description.references | Driveline V. GT-SUITE, 2016. | es_ES |
dc.description.references | Council GS of the. Proposal for a Regulation of the European Parliament and of the Council setting emission performance standards for new passenger cars and for new light commercial vehicles as part of the Union’s integrated approach to reduce CO2 emissions from light-duty. Brussels, 2019. | es_ES |
dc.description.references | Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data, 2009. doi:https://doi.org/10.4271/J2841_200903. | es_ES |
dc.description.references | Kaushik, L. K., & Muthukumar, P. (2018). Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner. Applied Thermal Engineering, 133, 316-326. doi:10.1016/j.applthermaleng.2018.01.050 | es_ES |
dc.description.references | Gnansounou, E., Dauriat, A., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21), 4919-4930. doi:10.1016/j.biortech.2009.05.067 | es_ES |
dc.description.references | Deng, T., Zhang, G., Ran, Y., & Liu, P. (2019). Thermal performance of lithium ion battery pack by using cold plate. Applied Thermal Engineering, 160, 114088. doi:10.1016/j.applthermaleng.2019.114088 | es_ES |
dc.description.references | Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. doi:10.1016/j.trd.2017.07.012 | es_ES |
dc.description.references | Shields, M. D., & Zhang, J. (2016). The generalization of Latin hypercube sampling. Reliability Engineering & System Safety, 148, 96-108. doi:10.1016/j.ress.2015.12.002 | es_ES |
dc.description.references | García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2018). Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions. Applied Sciences, 8(9), 1472. doi:10.3390/app8091472 | es_ES |