- -

Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hussain, Ayaz es_ES
dc.contributor.author Draz, Umar es_ES
dc.contributor.author Ali, Tariq es_ES
dc.contributor.author Tariq, Saman es_ES
dc.contributor.author Glowacz, Adam es_ES
dc.contributor.author Irfan, Muhammad es_ES
dc.contributor.author Antonino Daviu, José Alfonso es_ES
dc.contributor.author Yasin, Sana es_ES
dc.contributor.author Rahman, Saifur es_ES
dc.date.accessioned 2021-06-08T03:31:08Z
dc.date.available 2021-06-08T03:31:08Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167455
dc.description.abstract [EN] Increasing waste generation has become a significant issue over the globe due to the rapid increase in urbanization and industrialization. In the literature, many issues that have a direct impact on the increase of waste and the improper disposal of waste have been investigated. Most of the existing work in the literature has focused on providing a cost-efficient solution for the monitoring of garbage collection system using the Internet of Things (IoT). Though an IoT-based solution provides the real-time monitoring of a garbage collection system, it is limited to control the spreading of overspill and bad odor blowout gasses. The poor and inadequate disposal of waste produces toxic gases, and radiation in the environment has adverse effects on human health, the greenhouse system, and global warming. While considering the importance of air pollutants, it is imperative to monitor and forecast the concentration of air pollutants in addition to the management of the waste. In this paper, we present and IoT-based smart bin using a machine and deep learning model to manage the disposal of garbage and to forecast the air pollutant present in the surrounding bin environment. The smart bin is connected to an IoT-based server, the Google Cloud Server (GCP), which performs the computation necessary for predicting the status of the bin and for forecasting air quality based on real-time data. We experimented with a traditional model (k-nearest neighbors algorithm (k-NN) and logistic reg) and a non-traditional (long short term memory (LSTM) network-based deep learning) algorithm for the creation of alert messages regarding bin status and forecasting the amount of air pollutant carbon monoxide (CO) present in the air at a specific instance. The recalls of logistic regression and k-NN algorithm is 79% and 83%, respectively, in a real-time testing environment for predicting the status of the bin. The accuracy of modified LSTM and simple LSTM models is 90% and 88%, respectively, to predict the future concentration of gases present in the air. The system resulted in a delay of 4 s in the creation and transmission of the alert message to a sanitary worker. The system provided the real-time monitoring of garbage levels along with notifications from the alert mechanism. The proposed works provide improved accuracy by utilizing machine learning as compared to existing solutions based on simple approaches. es_ES
dc.description.sponsorship This research work was funded by the Ministry of Education and the Deanship of Scientific Research, Najran University. Kingdom of Saudi Arabia, under code number NU/ESCI/19/001. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Internet of Things es_ES
dc.subject Air monitoring es_ES
dc.subject Forecasting es_ES
dc.subject Air pollutant es_ES
dc.subject Smart bin es_ES
dc.subject Machine learning es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13153930 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NU//NU%2FESCI%2F19%2F001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Hussain, A.; Draz, U.; Ali, T.; Tariq, S.; Glowacz, A.; Irfan, M.; Antonino Daviu, JA.... (2020). Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach. Energies. 13(15):1-22. https://doi.org/10.3390/en13153930 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13153930 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\416682 es_ES
dc.contributor.funder Najran University, Arabia Saudí es_ES
dc.description.references Lionetto, M. G., Guascito, M. R., Caricato, R., Giordano, M. E., De Bartolomeo, A. R., Romano, M. P., … Contini, D. (2019). Correlation of Oxidative Potential with Ecotoxicological and Cytotoxicological Potential of PM10 at an Urban Background Site in Italy. Atmosphere, 10(12), 733. doi:10.3390/atmos10120733 es_ES
dc.description.references Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environmental Science & Technology, 48(16), 9523-9530. doi:10.1021/es502250z es_ES
dc.description.references Yan, F., Zhu, F., Wang, Q., & Xiong, Y. (2016). Preliminary Study of PM2.5 Formation During Municipal Solid Waste Incineration. Procedia Environmental Sciences, 31, 475-481. doi:10.1016/j.proenv.2016.02.054 es_ES
dc.description.references Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., & Pan, Y. (2006). Adverse health effects of outdoor air pollutants. Environment International, 32(6), 815-830. doi:10.1016/j.envint.2006.03.012 es_ES
dc.description.references Gollakota, A. R. K., Gautam, S., & Shu, C.-M. (2020). Inconsistencies of e-waste management in developing nations – Facts and plausible solutions. Journal of Environmental Management, 261, 110234. doi:10.1016/j.jenvman.2020.110234 es_ES
dc.description.references Anitha, A. (2017). Garbage monitoring system using IoT. IOP Conference Series: Materials Science and Engineering, 263, 042027. doi:10.1088/1757-899x/263/4/042027 es_ES
dc.description.references Sirsikar, S., & Karemore, P. (2015). Review Paper on Air Pollution Monitoring system. IJARCCE, 218-220. doi:10.17148/ijarcce.2015.4147 es_ES
dc.description.references Tavares Neto, R. F., & Godinho Filho, M. (2013). Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines for implementation and directions for future research. Engineering Applications of Artificial Intelligence, 26(1), 150-161. doi:10.1016/j.engappai.2012.03.011 es_ES
dc.description.references Ali, T., Irfan, M., Alwadie, A. S., & Glowacz, A. (2020). IoT-Based Smart Waste Bin Monitoring and Municipal Solid Waste Management System for Smart Cities. Arabian Journal for Science and Engineering, 45(12), 10185-10198. doi:10.1007/s13369-020-04637-w es_ES
dc.description.references Silva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustainable Cities and Society, 38, 697-713. doi:10.1016/j.scs.2018.01.053 es_ES
dc.description.references Gutierrez, J. M., Jensen, M., Henius, M., & Riaz, T. (2015). Smart Waste Collection System Based on Location Intelligence. Procedia Computer Science, 61, 120-127. doi:10.1016/j.procs.2015.09.170 es_ES
dc.description.references Carbon Monoxide Dangers in the Boiler Room www.pmmag.com/articles/97528-carbonmonoxide-danger-in-the-boiler-room es_ES
dc.description.references De Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008). On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors and Actuators B: Chemical, 129(2), 750-757. doi:10.1016/j.snb.2007.09.060 es_ES
dc.description.references Guiry, J., van de Ven, P., & Nelson, J. (2014). Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices. Sensors, 14(3), 5687-5701. doi:10.3390/s140305687 es_ES
dc.description.references Ali, T., Draz, U., Yasin, S., Noureen, J., shaf, A., & Zardari, M. (2018). An Efficient Participant’s Selection Algorithm for Crowdsensing. International Journal of Advanced Computer Science and Applications, 9(1). doi:10.14569/ijacsa.2018.090154 es_ES
dc.description.references Ali, T., Noureen, J., Draz, U., Shaf, A., Yasin, S., & Ayaz, M. (2018). Participants Ranking Algorithm for Crowdsensing in Mobile Communication. ICST Transactions on Scalable Information Systems, 5(16), 154476. doi:10.4108/eai.13-4-2018.154476 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem