Mostrar el registro sencillo del ítem
dc.contributor.author | Hussain, Ayaz | es_ES |
dc.contributor.author | Draz, Umar | es_ES |
dc.contributor.author | Ali, Tariq | es_ES |
dc.contributor.author | Tariq, Saman | es_ES |
dc.contributor.author | Glowacz, Adam | es_ES |
dc.contributor.author | Irfan, Muhammad | es_ES |
dc.contributor.author | Antonino Daviu, José Alfonso | es_ES |
dc.contributor.author | Yasin, Sana | es_ES |
dc.contributor.author | Rahman, Saifur | es_ES |
dc.date.accessioned | 2021-06-08T03:31:08Z | |
dc.date.available | 2021-06-08T03:31:08Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167455 | |
dc.description.abstract | [EN] Increasing waste generation has become a significant issue over the globe due to the rapid increase in urbanization and industrialization. In the literature, many issues that have a direct impact on the increase of waste and the improper disposal of waste have been investigated. Most of the existing work in the literature has focused on providing a cost-efficient solution for the monitoring of garbage collection system using the Internet of Things (IoT). Though an IoT-based solution provides the real-time monitoring of a garbage collection system, it is limited to control the spreading of overspill and bad odor blowout gasses. The poor and inadequate disposal of waste produces toxic gases, and radiation in the environment has adverse effects on human health, the greenhouse system, and global warming. While considering the importance of air pollutants, it is imperative to monitor and forecast the concentration of air pollutants in addition to the management of the waste. In this paper, we present and IoT-based smart bin using a machine and deep learning model to manage the disposal of garbage and to forecast the air pollutant present in the surrounding bin environment. The smart bin is connected to an IoT-based server, the Google Cloud Server (GCP), which performs the computation necessary for predicting the status of the bin and for forecasting air quality based on real-time data. We experimented with a traditional model (k-nearest neighbors algorithm (k-NN) and logistic reg) and a non-traditional (long short term memory (LSTM) network-based deep learning) algorithm for the creation of alert messages regarding bin status and forecasting the amount of air pollutant carbon monoxide (CO) present in the air at a specific instance. The recalls of logistic regression and k-NN algorithm is 79% and 83%, respectively, in a real-time testing environment for predicting the status of the bin. The accuracy of modified LSTM and simple LSTM models is 90% and 88%, respectively, to predict the future concentration of gases present in the air. The system resulted in a delay of 4 s in the creation and transmission of the alert message to a sanitary worker. The system provided the real-time monitoring of garbage levels along with notifications from the alert mechanism. The proposed works provide improved accuracy by utilizing machine learning as compared to existing solutions based on simple approaches. | es_ES |
dc.description.sponsorship | This research work was funded by the Ministry of Education and the Deanship of Scientific Research, Najran University. Kingdom of Saudi Arabia, under code number NU/ESCI/19/001. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject | Air monitoring | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Air pollutant | es_ES |
dc.subject | Smart bin | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en13153930 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NU//NU%2FESCI%2F19%2F001/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Hussain, A.; Draz, U.; Ali, T.; Tariq, S.; Glowacz, A.; Irfan, M.; Antonino Daviu, JA.... (2020). Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach. Energies. 13(15):1-22. https://doi.org/10.3390/en13153930 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en13153930 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\416682 | es_ES |
dc.contributor.funder | Najran University, Arabia Saudí | es_ES |
dc.description.references | Lionetto, M. G., Guascito, M. R., Caricato, R., Giordano, M. E., De Bartolomeo, A. R., Romano, M. P., … Contini, D. (2019). Correlation of Oxidative Potential with Ecotoxicological and Cytotoxicological Potential of PM10 at an Urban Background Site in Italy. Atmosphere, 10(12), 733. doi:10.3390/atmos10120733 | es_ES |
dc.description.references | Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environmental Science & Technology, 48(16), 9523-9530. doi:10.1021/es502250z | es_ES |
dc.description.references | Yan, F., Zhu, F., Wang, Q., & Xiong, Y. (2016). Preliminary Study of PM2.5 Formation During Municipal Solid Waste Incineration. Procedia Environmental Sciences, 31, 475-481. doi:10.1016/j.proenv.2016.02.054 | es_ES |
dc.description.references | Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., & Pan, Y. (2006). Adverse health effects of outdoor air pollutants. Environment International, 32(6), 815-830. doi:10.1016/j.envint.2006.03.012 | es_ES |
dc.description.references | Gollakota, A. R. K., Gautam, S., & Shu, C.-M. (2020). Inconsistencies of e-waste management in developing nations – Facts and plausible solutions. Journal of Environmental Management, 261, 110234. doi:10.1016/j.jenvman.2020.110234 | es_ES |
dc.description.references | Anitha, A. (2017). Garbage monitoring system using IoT. IOP Conference Series: Materials Science and Engineering, 263, 042027. doi:10.1088/1757-899x/263/4/042027 | es_ES |
dc.description.references | Sirsikar, S., & Karemore, P. (2015). Review Paper on Air Pollution Monitoring system. IJARCCE, 218-220. doi:10.17148/ijarcce.2015.4147 | es_ES |
dc.description.references | Tavares Neto, R. F., & Godinho Filho, M. (2013). Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines for implementation and directions for future research. Engineering Applications of Artificial Intelligence, 26(1), 150-161. doi:10.1016/j.engappai.2012.03.011 | es_ES |
dc.description.references | Ali, T., Irfan, M., Alwadie, A. S., & Glowacz, A. (2020). IoT-Based Smart Waste Bin Monitoring and Municipal Solid Waste Management System for Smart Cities. Arabian Journal for Science and Engineering, 45(12), 10185-10198. doi:10.1007/s13369-020-04637-w | es_ES |
dc.description.references | Silva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustainable Cities and Society, 38, 697-713. doi:10.1016/j.scs.2018.01.053 | es_ES |
dc.description.references | Gutierrez, J. M., Jensen, M., Henius, M., & Riaz, T. (2015). Smart Waste Collection System Based on Location Intelligence. Procedia Computer Science, 61, 120-127. doi:10.1016/j.procs.2015.09.170 | es_ES |
dc.description.references | Carbon Monoxide Dangers in the Boiler Room www.pmmag.com/articles/97528-carbonmonoxide-danger-in-the-boiler-room | es_ES |
dc.description.references | De Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008). On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors and Actuators B: Chemical, 129(2), 750-757. doi:10.1016/j.snb.2007.09.060 | es_ES |
dc.description.references | Guiry, J., van de Ven, P., & Nelson, J. (2014). Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices. Sensors, 14(3), 5687-5701. doi:10.3390/s140305687 | es_ES |
dc.description.references | Ali, T., Draz, U., Yasin, S., Noureen, J., shaf, A., & Zardari, M. (2018). An Efficient Participant’s Selection Algorithm for Crowdsensing. International Journal of Advanced Computer Science and Applications, 9(1). doi:10.14569/ijacsa.2018.090154 | es_ES |
dc.description.references | Ali, T., Noureen, J., Draz, U., Shaf, A., Yasin, S., & Ayaz, M. (2018). Participants Ranking Algorithm for Crowdsensing in Mobile Communication. ICST Transactions on Scalable Information Systems, 5(16), 154476. doi:10.4108/eai.13-4-2018.154476 | es_ES |