Mostrar el registro sencillo del ítem
dc.contributor.author | Pons, Joaquín J. | es_ES |
dc.contributor.author | Villalba Sanchis, Ignacio | es_ES |
dc.contributor.author | Insa Franco, Ricardo | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.date.accessioned | 2021-06-09T03:31:42Z | |
dc.date.available | 2021-06-09T03:31:42Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0195-9255 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167600 | |
dc.description.abstract | [EN] The increase of train speed and axle load is an essential goal to make the railway transport more and more competitive for passengers and freights. On this basis, the unevenness of the railway track is crucial for the safety of the railway due to the high speed of the vehicle. Although ballasted tracks represent by far the most used railway track substructure, in recent years the modernization process has led the development of the ballastless track substructures. In deciding between the use of ballasted or ballastless track substructure there are many important technical, economical and environmental factors that have to be addressed. Based on the above, the principal objective of this study was to evaluate the environmental impact of different railway track substructures including ballast, cast-in sleeper and embedded track systems on the short, medium and long term. To accomplish this task, a life cycle assessment (LCA) was carried out throughout the entire life cycle of the railway infrastructure by using the ReCiPe (H) method. Although such approach is commonly included in the environmental assessment of building products and buildings, it was rarely applied in the analysis of the environmental impacts of railway track substructure. Thus, the result of these LCA showed that ballasted tracks cause the lowest environmental impact for service lives of up to 75 years. On the other hand, the embedded track beds cause the highest environmental impacts, regardless of their service life. The highest contributor for the environmental impacts of the track beds was the steel production. The results of this study will provide relevant environmental information for engineers and decision makers to select the most adequate railway track substructures for addressing issues related to the pursuit of sustainable development. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Project BIA2017-85098R), as well as Dr. Ignacio Navarro Martinez for their valuable comments and assistance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Environmental Impact Assessment Review | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Life cycle assessment (LCA) | es_ES |
dc.subject | High speed railway (HSR) | es_ES |
dc.subject | Railway infrastructure | es_ES |
dc.subject | Railway track-bed | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.eiar.2020.106444 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Pons, JJ.; Villalba Sanchis, I.; Insa Franco, R.; Yepes, V. (2020). Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review. 85:1-11. https://doi.org/10.1016/j.eiar.2020.106444 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.eiar.2020.106444 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 85 | es_ES |
dc.relation.pasarela | S\415906 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Åkerman, J. (2011). The role of high-speed rail in mitigating climate change – The Swedish case Europabanan from a life cycle perspective. Transportation Research Part D: Transport and Environment, 16(3), 208-217. doi:10.1016/j.trd.2010.12.004 | es_ES |
dc.description.references | Banar, M., & Özdemir, A. (2015). An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment, 41, 88-105. doi:10.1016/j.trd.2015.09.017 | es_ES |
dc.description.references | Bressi, S., D’Angelo, G., Santos, J., & Giunta, M. (2018). Environmental performance analysis of bitumen stabilized ballast for railway track-bed using life-cycle assessment. Construction and Building Materials, 188, 1050-1064. doi:10.1016/j.conbuildmat.2018.08.175 | es_ES |
dc.description.references | Chester, M., & Horvath, A. (2010). Life-cycle assessment of high-speed rail: the case of California. Environmental Research Letters, 5(1), 014003. doi:10.1088/1748-9326/5/1/014003 | es_ES |
dc.description.references | Ciroth, A. (2007). ICT for environment in life cycle applications openLCA — A new open source software for life cycle assessment. The International Journal of Life Cycle Assessment, 12(4), 209-210. doi:10.1065/lca2007.06.337 | es_ES |
dc.description.references | Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2013). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. doi:10.1007/s11367-013-0670-5 | es_ES |
dc.description.references | Fridell, E., Bäckström, S., & Stripple, H. (2019). Considering infrastructure when calculating emissions for freight transportation. Transportation Research Part D: Transport and Environment, 69, 346-363. doi:10.1016/j.trd.2019.02.013 | es_ES |
dc.description.references | Frischknecht, R., & Rebitzer, G. (2005). The ecoinvent database system: a comprehensive web-based LCA database. Journal of Cleaner Production, 13(13-14), 1337-1343. doi:10.1016/j.jclepro.2005.05.002 | es_ES |
dc.description.references | Jones, H., Moura, F., & Domingos, T. (2016). Life cycle assessment of high-speed rail: a case study in Portugal. The International Journal of Life Cycle Assessment, 22(3), 410-422. doi:10.1007/s11367-016-1177-7 | es_ES |
dc.description.references | Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34-48. doi:10.1016/j.jclepro.2014.01.044 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., & Martí, J. V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967. doi:10.1080/15732479.2019.1676791 | es_ES |
dc.description.references | Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 | es_ES |
dc.description.references | Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845 | es_ES |
dc.description.references | Nimbalkar, S., Indraratna, B., Dash, S. K., & Christie, D. (2012). Improved Performance of Railway Ballast under Impact Loads Using Shock Mats. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 281-294. doi:10.1061/(asce)gt.1943-5606.0000598 | es_ES |
dc.description.references | Pascual-González, J., Guillén-Gosálbez, G., Mateo-Sanz, J. M., & Jiménez-Esteller, L. (2016). Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. Journal of Cleaner Production, 112, 359-368. doi:10.1016/j.jclepro.2015.05.129 | es_ES |
dc.description.references | Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685 | es_ES |
dc.description.references | Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 | es_ES |
dc.description.references | Praticò, F. G., & Giunta, M. (2018). Proposal of a Key Performance Indicator for Railway Track Based on LCC and RAMS Analyses. Journal of Construction Engineering and Management, 144(2), 04017104. doi:10.1061/(asce)co.1943-7862.0001422 | es_ES |
dc.description.references | Pratico, F. G., & Giunta, M. (2018). LCC-Based Appraisal of Ballasted and Slab Tracks: Limits and Potential. The Baltic Journal of Road and Bridge Engineering, 13(4), 475-499. doi:10.7250/bjrbe.2018-13.429 | es_ES |
dc.description.references | Rozycki, C. von, Koeser, H., & Schwarz, H. (2003). Ecology profile of the german high-speed rail passenger transport system, ICE. The International Journal of Life Cycle Assessment, 8(2), 83-91. doi:10.1007/bf02978431 | es_ES |
dc.description.references | Sadeghi, J., Motieyan-Najar, M. E., Zakeri, J. A., Yousefi, B., & Mollazadeh, M. (2018). Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions. Journal of Applied Geophysics, 151, 263-273. doi:10.1016/j.jappgeo.2018.02.020 | es_ES |
dc.description.references | Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556 | es_ES |
dc.description.references | Yue, Y., Wang, T., Liang, S., Yang, J., Hou, P., Qu, S., … Xu, M. (2015). Life cycle assessment of High Speed Rail in China. Transportation Research Part D: Transport and Environment, 41, 367-376. doi:10.1016/j.trd.2015.10.005 | es_ES |
dc.description.references | Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |