- -

Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pons, Joaquín J. es_ES
dc.contributor.author Villalba Sanchis, Ignacio es_ES
dc.contributor.author Insa Franco, Ricardo es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-06-09T03:31:42Z
dc.date.available 2021-06-09T03:31:42Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0195-9255 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167600
dc.description.abstract [EN] The increase of train speed and axle load is an essential goal to make the railway transport more and more competitive for passengers and freights. On this basis, the unevenness of the railway track is crucial for the safety of the railway due to the high speed of the vehicle. Although ballasted tracks represent by far the most used railway track substructure, in recent years the modernization process has led the development of the ballastless track substructures. In deciding between the use of ballasted or ballastless track substructure there are many important technical, economical and environmental factors that have to be addressed. Based on the above, the principal objective of this study was to evaluate the environmental impact of different railway track substructures including ballast, cast-in sleeper and embedded track systems on the short, medium and long term. To accomplish this task, a life cycle assessment (LCA) was carried out throughout the entire life cycle of the railway infrastructure by using the ReCiPe (H) method. Although such approach is commonly included in the environmental assessment of building products and buildings, it was rarely applied in the analysis of the environmental impacts of railway track substructure. Thus, the result of these LCA showed that ballasted tracks cause the lowest environmental impact for service lives of up to 75 years. On the other hand, the embedded track beds cause the highest environmental impacts, regardless of their service life. The highest contributor for the environmental impacts of the track beds was the steel production. The results of this study will provide relevant environmental information for engineers and decision makers to select the most adequate railway track substructures for addressing issues related to the pursuit of sustainable development. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Project BIA2017-85098R), as well as Dr. Ignacio Navarro Martinez for their valuable comments and assistance. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Environmental Impact Assessment Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Life cycle assessment (LCA) es_ES
dc.subject High speed railway (HSR) es_ES
dc.subject Railway infrastructure es_ES
dc.subject Railway track-bed es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.eiar.2020.106444 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Pons, JJ.; Villalba Sanchis, I.; Insa Franco, R.; Yepes, V. (2020). Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review. 85:1-11. https://doi.org/10.1016/j.eiar.2020.106444 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.eiar.2020.106444 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.relation.pasarela S\415906 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Åkerman, J. (2011). The role of high-speed rail in mitigating climate change – The Swedish case Europabanan from a life cycle perspective. Transportation Research Part D: Transport and Environment, 16(3), 208-217. doi:10.1016/j.trd.2010.12.004 es_ES
dc.description.references Banar, M., & Özdemir, A. (2015). An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment, 41, 88-105. doi:10.1016/j.trd.2015.09.017 es_ES
dc.description.references Bressi, S., D’Angelo, G., Santos, J., & Giunta, M. (2018). Environmental performance analysis of bitumen stabilized ballast for railway track-bed using life-cycle assessment. Construction and Building Materials, 188, 1050-1064. doi:10.1016/j.conbuildmat.2018.08.175 es_ES
dc.description.references Chester, M., & Horvath, A. (2010). Life-cycle assessment of high-speed rail: the case of California. Environmental Research Letters, 5(1), 014003. doi:10.1088/1748-9326/5/1/014003 es_ES
dc.description.references Ciroth, A. (2007). ICT for environment in life cycle applications openLCA — A new open source software for life cycle assessment. The International Journal of Life Cycle Assessment, 12(4), 209-210. doi:10.1065/lca2007.06.337 es_ES
dc.description.references Ciroth, A., Muller, S., Weidema, B., & Lesage, P. (2013). Empirically based uncertainty factors for the pedigree matrix in ecoinvent. The International Journal of Life Cycle Assessment, 21(9), 1338-1348. doi:10.1007/s11367-013-0670-5 es_ES
dc.description.references Fridell, E., Bäckström, S., & Stripple, H. (2019). Considering infrastructure when calculating emissions for freight transportation. Transportation Research Part D: Transport and Environment, 69, 346-363. doi:10.1016/j.trd.2019.02.013 es_ES
dc.description.references Frischknecht, R., & Rebitzer, G. (2005). The ecoinvent database system: a comprehensive web-based LCA database. Journal of Cleaner Production, 13(13-14), 1337-1343. doi:10.1016/j.jclepro.2005.05.002 es_ES
dc.description.references Jones, H., Moura, F., & Domingos, T. (2016). Life cycle assessment of high-speed rail: a case study in Portugal. The International Journal of Life Cycle Assessment, 22(3), 410-422. doi:10.1007/s11367-016-1177-7 es_ES
dc.description.references Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34-48. doi:10.1016/j.jclepro.2014.01.044 es_ES
dc.description.references Navarro, I. J., Yepes, V., & Martí, J. V. (2019). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7), 949-967. doi:10.1080/15732479.2019.1676791 es_ES
dc.description.references Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110 es_ES
dc.description.references Navarro, I., Yepes, V., & Martí, J. (2018). Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability, 10(3), 845. doi:10.3390/su10030845 es_ES
dc.description.references Nimbalkar, S., Indraratna, B., Dash, S. K., & Christie, D. (2012). Improved Performance of Railway Ballast under Impact Loads Using Shock Mats. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 281-294. doi:10.1061/(asce)gt.1943-5606.0000598 es_ES
dc.description.references Pascual-González, J., Guillén-Gosálbez, G., Mateo-Sanz, J. M., & Jiménez-Esteller, L. (2016). Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. Journal of Cleaner Production, 112, 359-368. doi:10.1016/j.jclepro.2015.05.129 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685 es_ES
dc.description.references Pons, J. J., Penadés-Plà, V., Yepes, V., & Martí, J. V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192, 411-420. doi:10.1016/j.jclepro.2018.04.268 es_ES
dc.description.references Praticò, F. G., & Giunta, M. (2018). Proposal of a Key Performance Indicator for Railway Track Based on LCC and RAMS Analyses. Journal of Construction Engineering and Management, 144(2), 04017104. doi:10.1061/(asce)co.1943-7862.0001422 es_ES
dc.description.references Pratico, F. G., & Giunta, M. (2018). LCC-Based Appraisal of Ballasted and Slab Tracks: Limits and Potential. The Baltic Journal of Road and Bridge Engineering, 13(4), 475-499. doi:10.7250/bjrbe.2018-13.429 es_ES
dc.description.references Rozycki, C. von, Koeser, H., & Schwarz, H. (2003). Ecology profile of the german high-speed rail passenger transport system, ICE. The International Journal of Life Cycle Assessment, 8(2), 83-91. doi:10.1007/bf02978431 es_ES
dc.description.references Sadeghi, J., Motieyan-Najar, M. E., Zakeri, J. A., Yousefi, B., & Mollazadeh, M. (2018). Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions. Journal of Applied Geophysics, 151, 263-273. doi:10.1016/j.jappgeo.2018.02.020 es_ES
dc.description.references Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556 es_ES
dc.description.references Yue, Y., Wang, T., Liang, S., Yang, J., Hou, P., Qu, S., … Xu, M. (2015). Life cycle assessment of High Speed Rail in China. Transportation Research Part D: Transport and Environment, 41, 367-376. doi:10.1016/j.trd.2015.10.005 es_ES
dc.description.references Zastrow, P., Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. Journal of Cleaner Production, 140, 1037-1048. doi:10.1016/j.jclepro.2016.10.085 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem