- -

Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes J.M. es_ES
dc.contributor.author Molina, Santiago es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author López-Juárez, Marcos es_ES
dc.date.accessioned 2021-06-10T03:32:17Z
dc.date.available 2021-06-10T03:32:17Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167743
dc.description.abstract [EN] With the rise of cleaner technologies for transport and the emergence of H-2 as a fuel, most of the emissions in the well-to-wheel process are shifting towards the energy carrier production (fuel or electricity). The objective of this study is to perform a simplified cradle-to-grave Life Cycle Assessment (LCA) that compares the greenhouse gases (GHG) and NOX emissions of H-2, electric and conventional technologies for the automotive sector in Europe and to devise the optimum strategy of vehicle fleet renewal to reduce the emissions. In this study the effect of water as GHG was considered and, unless other studies, the current European energy mix and that meeting the objectives for 2050 were considered (while technology level was kept constant) since H-2 from electrolysis and electric vehicles' well-to-wheel emissions are sensitive to the energy mix. To estimate the emissions, the fuel, vehicle production and operation cycles were considered independently for each technology and then put together. For H-2, the best production and distribution strategy was steam methane reforming (SMR) with CO2 sequestration for GHG-100 gases and without capturing CO2 for NOX, both with central plant production and tube trailer transport. Fuel cell vehicles (FCV) with optimum H-2 production always produce the lowest GHG-100 emissions and slightly higher NOX than battery electric vehicles (BEV) in the EU 2050 scenario. In contrast, HICEV would need to reach a fuel consumption of around 30 kWh/100 km to be competitive in emissions against BEV, for that, direct injection (DI) combined with a range extender (REx) hybrid architecture is the recommended powerplant concept. Finally, the optimum strategy to reduce emissions that Europe could follow is presented for the short, mid and long term. es_ES
dc.description.sponsorship This research has been partially funded by FEDER and the Spanish Government through project RTI2018-102025-B-I00 (CLEAN-FUEL). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject LCA es_ES
dc.subject Hydrogen es_ES
dc.subject Fuel cell es_ES
dc.subject HICE es_ES
dc.subject Hybrid vehicles es_ES
dc.subject Electric vehicles es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2020.113137 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102025-B-I00/ES/EVALUACION DE LA REDUCCION DE EMISIONES CONTAMINANTES Y CO2 CON EL USO DE COMBUSTIBLES LIMPIOS EN VEHICULOS HIBRIDOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Desantes J.M.; Molina, S.; Novella Rosa, R.; López-Juárez, M. (2020). Comparative global warming impact and NOx emissions of conventional and hydrogen automotive propulsion systems. Energy Conversion and Management. 221(113137):1-9. https://doi.org/10.1016/j.enconman.2020.113137 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2020.113137 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 221 es_ES
dc.description.issue 113137 es_ES
dc.relation.pasarela S\415825 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references European Commission, A Clean Planet for all - A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy, Com (2018) 773; 2018. p. 114. URL:https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf%0Ahttps://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf?utm_campaign=AktuellHållbarhet-Direkten_181129_Username&utm_medium=email&utm_source=Eloqua&elqTrackId. es_ES
dc.description.references Fuel Cells & Hydrogen (FCH), Hydrogen Roadmap Europe - a Sustainable Pathway for the European Energy Transition, 1st Edition, Publications Office of the European Union; 2019. doi:10.2843/341510. es_ES
dc.description.references International Energy Agency, CO2 Emissions from Fuel Combustion, Tech. rep.; 2019. URL:https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019. es_ES
dc.description.references European Environmental Agency (EEA), Greenhouse gas emissions from transport in Europe, Tech. rep., European Environmental Agency (EEA), Copenhagen; 2019. URL:https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12. es_ES
dc.description.references Boningari T, Smirniotis PG. Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement, Current Opinion in Chemical Engineering 13(x):2016;133–141. doi:10.1016/j.coche.2016.09.004. URL: doi: 10.1016/j.coche.2016.09.004. es_ES
dc.description.references European Commission, EU Reference Scenario 2016, Tech. rep., European Commission; 2016. doi:10.2833/9127. URL:https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf [accessed on 25 August 2017]. es_ES
dc.description.references Verhelst, S., & Wallner, T. (2009). Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science, 35(6), 490-527. doi:10.1016/j.pecs.2009.08.001 es_ES
dc.description.references Zamel, N, Li X. Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles for Canada and the United States. J Power Sour 162(2 SPEC. ISS.):2006:1241–53. doi:10.1016/j.jpowsour.2006.08.007. es_ES
dc.description.references Pehnt M. Life-cycle analysis of fuel cell system components. In: Handbook of fuel cells, vol. 4; 2003, Ch. 94. p. 1293–317. doi:10.1002/9780470974001.f312108. es_ES
dc.description.references Suwanmanee, U., Saebea, D., Hacker, V., Assabumrungrat, S., Arpornwichanop, A., & Authayanun, S. (2018). Conceptual design and life cycle assessment of decentralized power generation by HT-PEMFC system with sorption enhanced water gas shift loop. Energy Conversion and Management, 171, 20-30. doi:10.1016/j.enconman.2018.05.068 es_ES
dc.description.references Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conv Manage 205October 2019):2020;112182. doi:10.1016/j.enconman.2019.112182. URL: https://doi.org/10.1016/j.enconman.2019.112182. es_ES
dc.description.references Evangelisti, S., Tagliaferri, C., Brett, D. J. L., & Lettieri, P. (2017). Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. Journal of Cleaner Production, 142, 4339-4355. doi:10.1016/j.jclepro.2016.11.159 es_ES
dc.description.references Elgowainy A, Reddi K, Wang M. Life-Cycle Analysis of Hydrogen On-Board Storage Options, Argonne National Laboratory. URL:http://www.hydrogen.energy.gov/pdfs/review13/an034_elgowainy_2013_o.pdf. es_ES
dc.description.references García Sánchez, J. A., López Martínez, J. M., Lumbreras Martín, J., Flores Holgado, M. N., & Aguilar Morales, H. (2013). Impact of Spanish electricity mix, over the period 2008–2030, on the Life Cycle energy consumption and GHG emissions of Electric, Hybrid Diesel-Electric, Fuel Cell Hybrid and Diesel Bus of the Madrid Transportation System. Energy Conversion and Management, 74, 332-343. doi:10.1016/j.enconman.2013.05.023 es_ES
dc.description.references Sherwood, S. C., Dixit, V., & Salomez, C. (2018). The global warming potential of near-surface emitted water vapour. Environmental Research Letters, 13(10), 104006. doi:10.1088/1748-9326/aae018 es_ES
dc.description.references IPCC, Climate Change 2014, Tech. rep., Cambridge; 2015. URL:https://www.cambridge.org/core/product/identifier/CBO9781139177245A012/type/book_part. es_ES
dc.description.references European Commission - Eurostat, Energy balances; 2017. URL:https://ec.europa.eu/eurostat/web/energy/data/energy-balances. es_ES
dc.description.references Boyden, A., Soo, V. K., & Doolan, M. (2016). The Environmental Impacts of Recycling Portable Lithium-Ion Batteries. Procedia CIRP, 48, 188-193. doi:10.1016/j.procir.2016.03.100 es_ES
dc.description.references Notter, D. A., Kouravelou, K., Karachalios, T., Daletou, M. K., & Haberland, N. T. (2015). Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy & Environmental Science, 8(7), 1969-1985. doi:10.1039/c5ee01082a es_ES
dc.description.references Keoleian G, Miller S, Kleine RD, Fang A, J.sley, Life Cycle Material Data Update for GREET Model - Report No. CSS12-12, Tech. rep.; 2012. URL:http://css.snre.umich.edu/css_doc/CSS12-12.pdf. es_ES
dc.description.references Transport Canada, GMC Sierra 1500 Hydrogen Internal Combustion Engine (HICE ) Test Results Report (June). es_ES
dc.description.references Hass H, Huss A, Maas H. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: Tank-to-Wheels Appendix 1 - Version 4.a, 2014. doi:10.2790/95839. es_ES
dc.description.references US DOE, Technology Assessment of a Fuel Cell Vehicle: 2017 Toyota Mirai Energy Systems Division, US DOE -Energy Systems Division. URL: www.anl.gov. es_ES
dc.description.references Lampert D, Cai H, Wang Z, Wu M, Han J, Dunn J, et al. Development of a Lice Cycle Inventory for Water Consumption Associated with the Production of Transportation Fuels, Tech. rep., Argonne National Laboratory - Energy Systems Division; 2015. es_ES
dc.description.references Hogerwaard J, Dincer I, Naterer GF. Experimental investigation and optimization of integrated photovoltaic and photoelectrochemical hydrogen generation. Energy Conv Manage 207(January):2020;112541. doi:10.1016/j.enconman.2020.112541. URL: https://doi.org/10.1016/j.enconman.2020.112541. es_ES
dc.description.references Nagapurkar P, Smith JD. Techno-economic optimization and environmental Life Cycle Assessment (LCA) of microgrids located in the US using genetic algorithm. Energy Conv Manage 181(December 2018):2019;272–91. doi:10.1016/j.enconman.2018.11.072. URL: doi: 10.1016/j.enconman.2018.11.072. es_ES
dc.description.references Antzara A, Heracleous E, Bukur DB, Lemonidou AA. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture. Energy Procedia 63(May 2015):2014;6576–89. doi:10.1016/j.egypro.2014.11.694. es_ES
dc.description.references Farid A, Gallarda J, Mineur B, Bradley S, Ott W, Ibler M. Best available techniques for hydrogen production by steam methane reforming, IGC document. URL:http://www.eiga.eu. es_ES
dc.description.references Dai Q, Kelly JC, Elgowainy A. Vehicle Materials: Material Composition of U.S. Light-duty Vehicles, Tech. Rep. September, Argonne National Laboratory: Energy Systems Division; 2016. es_ES
dc.description.references Kawamura, A., Yanai, T., Sato, Y., Naganuma, K., Yamane, K., & Takagi, Y. (2009). Summary and Progress of the Hydrogen ICE Truck Development Project. SAE International Journal of Commercial Vehicles, 2(1), 110-117. doi:10.4271/2009-01-1922 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem