- -

Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps

Mostrar el registro completo del ítem

Hervás-Blasco, E.; Navarro-Peris, E.; Corberán, JM. (2020). Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps. Energy and Buildings. 216:1-15. https://doi.org/10.1016/j.enbuild.2020.109962

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167744

Ficheros en el ítem

Metadatos del ítem

Título: Closing the residential energy loop: Grey-water heat recovery system for domestic hot water production based on heat pumps
Autor: Hervás-Blasco, Estefanía Navarro-Peris, Emilio Corberán, José M.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Passive houses linked to more efficient heating and cooling technologies have been one of the focus in last years. However, to close the loop of the building sector, there is still one open source: wasted heat from ...[+]
Palabras clave: Energy efficiency , Heat recovery , Domestic hot water , Heat pump
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Energy and Buildings. (issn: 0378-7788 )
DOI: 10.1016/j.enbuild.2020.109962
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.enbuild.2020.109962
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-83665-C2-1-P/ES/MAXIMIZACION DE LA EFICIENCIA Y MINIMIZACION DEL IMPACTO AMBIENTAL DE BOMBAS DE CALOR PARA LA DESCARBONIZACION DE LA CALEFACCION%2FACS EN LOS EDIFICIOS DE CONSUMO CASI NULO/
Gobierno de España/SFPI1500 x 074478XV0
Agradecimientos:
Part of the work presented was carried out by Estefania Hervas Blasco with the financial support of a PhD scholarship from the Spanish government SFPI1500 x074478XV0. The authors would like also to acknowledge the Spanish ...[+]
Tipo: Artículo

References

García-Álvarez, M. T., Moreno, B., & Soares, I. (2016). Analyzing the sustainable energy development in the EU-15 by an aggregated synthetic index. Ecological Indicators, 60, 996-1007. doi:10.1016/j.ecolind.2015.07.006

News and Developments – Architecture 20302018. https://architecture2030.org/news-and-developments/(Accessed 29 November 2018).

Energy consumption in households - Statistics Explained2018. http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households(Accessed 1 August 2018). [+]
García-Álvarez, M. T., Moreno, B., & Soares, I. (2016). Analyzing the sustainable energy development in the EU-15 by an aggregated synthetic index. Ecological Indicators, 60, 996-1007. doi:10.1016/j.ecolind.2015.07.006

News and Developments – Architecture 20302018. https://architecture2030.org/news-and-developments/(Accessed 29 November 2018).

Energy consumption in households - Statistics Explained2018. http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households(Accessed 1 August 2018).

Technical | Passive House energy reduection and efficiency2017. http://recoupwwhrs.co.uk/technical/passive-house/(Accessed 1 August 2018).

Meggers, F., & Leibundgut, H. (2011). The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump. Energy and Buildings, 43(4), 879-886. doi:10.1016/j.enbuild.2010.12.008

Hepbasli, A., Biyik, E., Ekren, O., Gunerhan, H., & Araz, M. (2014). A key review of wastewater source heat pump (WWSHP) systems. Energy Conversion and Management, 88, 700-722. doi:10.1016/j.enconman.2014.08.065

Spriet, J., & McNabola, A. (2019). Decentralized drain water heat recovery from commercial kitchens in the hospitality sector. Energy and Buildings, 194, 247-259. doi:10.1016/j.enbuild.2019.04.032

Baek, N. C., Shin, U. C., & Yoon, J. H. (2005). A study on the design and analysis of a heat pump heating system using wastewater as a heat source. Solar Energy, 78(3), 427-440. doi:10.1016/j.solener.2004.07.009

Nehm G., Nehme G., Palandre L., Clodic D.Purdue e-Pubs high efficiency heat pump for domestic hot water generation2008.

Dar, U. I., Sartori, I., Georges, L., & Novakovic, V. (2014). Advanced control of heat pumps for improved flexibility of Net-ZEB towards the grid. Energy and Buildings, 69, 74-84. doi:10.1016/j.enbuild.2013.10.019

Cecchinato, L., Corradi, M., Fornasieri, E., & Zamboni, L. (2005). Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution. International Journal of Refrigeration, 28(8), 1250-1258. doi:10.1016/j.ijrefrig.2005.05.019

Kharagpur Indian Institute of Technology. Lesson 10 - Vapour Compression refrigeration systems. Refrig. Air Cond. Lect.2005:1–18.

Gluesenkamp K.R., Patel V., Abdelaziz O., Mandel B., Dealmeida V.High efficiency water heating technology development-final report, part II: CO2 and absorption-based residential heat pump water heater development. 2017.

Miquel Pitarch i Mocholí. High capacity heat pump development for sanitary hot water production. 2017.

Hervás-Blasco, E., Navarro-Peris, E., Barceló-Ruescas, F., & Corberán, J. M. (2019). Improved water to water heat pump design for low-temperature waste heat recovery based on subcooling control. International Journal of Refrigeration, 106, 374-383. doi:10.1016/j.ijrefrig.2019.06.030

Tammaro, M., Montagud, C., Corberán, J. M., Mauro, A. W., & Mastrullo, R. (2017). Seasonal performance assessment of sanitary hot water production systems using propane and CO 2 heat pumps. International Journal of Refrigeration, 74, 224-239. doi:10.1016/j.ijrefrig.2016.09.026

Jensen, J. B., & Skogestad, S. (2007). Optimal operation of simple refrigeration cycles. Computers & Chemical Engineering, 31(5-6), 712-721. doi:10.1016/j.compchemeng.2006.12.003

Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., & Corberán, J. M. (2017). Evaluation of different heat pump systems for sanitary hot water production using natural refrigerants. Applied Energy, 190, 911-919. doi:10.1016/j.apenergy.2016.12.166

Koeln, J. P., & Alleyne, A. G. (2014). Optimal subcooling in vapor compression systems via extremum seeking control: Theory and experiments. International Journal of Refrigeration, 43, 14-25. doi:10.1016/j.ijrefrig.2014.03.012

Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., & Corberán, J. M. (2018). Study of different subcooling control strategies in order to enhance the performance of a heat pump. International Journal of Refrigeration, 88, 324-336. doi:10.1016/j.ijrefrig.2018.02.003

Chow, T. T., Pei, G., Fong, K. F., Lin, Z., Chan, A. L. S., & He, M. (2010). Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong. Applied Energy, 87(2), 643-649. doi:10.1016/j.apenergy.2009.05.036

Baek N.C., Shin U.C., Yoon J.H.A study on the design and analysis of a heat pump heating system using wastewater as a heat source2004. doi:10.1016/j.solener.2004.07.009.

REULENS, W., ‘Natural refrigerant CO2 edited by Walter Reulens October 2009 (Leonardo project)’ http://www.atmosphere2009.com/files/NaReCO2-handbook-2009.pdf.

Tammaro, M., Montagud, C., Corberán, J. M., Mauro, A. W., & Mastrullo, R. (2015). A propane water-to-water heat pump booster for sanitary hot water production: Seasonal performance analysis of a new solution optimizing COP. International Journal of Refrigeration, 51, 59-69. doi:10.1016/j.ijrefrig.2014.12.008

Spriet, J., & McNabola, A. (2019). Decentralized drain water heat recovery: A probabilistic method for prediction of wastewater and heating system interaction. Energy and Buildings, 183, 684-696. doi:10.1016/j.enbuild.2018.11.036

Hervás-Blasco, E., Navarro-Peris, E., & Corberán, J. M. (2019). Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source. Energy, 188, 115979. doi:10.1016/j.energy.2019.115979

Ferrantelli, A., Ahmed, K., Pylsy, P., & Kurnitski, J. (2017). Analytical modelling and prediction formulas for domestic hot water consumption in residential Finnish apartments. Energy and Buildings, 143, 53-60. doi:10.1016/j.enbuild.2017.03.021

Zhen L., Lin D.M., Shu H.W., Jiang S., Zhu Y.X. District cooling and heating with seawater as heat source and sink in Dalian, China. vol. 32. 2007. doi:10.1016/j.renene.2006.12.015.

Torío, H., & Schmidt, D. (2010). Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis. Energy and Buildings, 42(10), 1601-1609. doi:10.1016/j.enbuild.2010.04.002

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th Generation District Heating (4GDH). Energy, 68, 1-11. doi:10.1016/j.energy.2014.02.089

Alnahhal S., Spremberg E.Contribution to exemplary in-house wastewater heat recovery in Berlin, 2016;40:35–40. doi:10.1016/j.procir.2016.01.046.

Baek N.C., Shin U.C., Yoon J.H. A study on the design and analysis of a heat pump heating system using wastewater as a heat source2004. doi:10.1016/j.solener.2004.07.009.

Ni, L., Lau, S. K., Li, H., Zhang, T., Stansbury, J. S., Shi, J., & Neal, J. (2012). Feasibility study of a localized residential grey water energy-recovery system. Applied Thermal Engineering, 39, 53-62. doi:10.1016/j.applthermaleng.2012.01.031

Bertrand, A., Aggoune, R., & Maréchal, F. (2017). In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Applied Energy, 192, 110-125. doi:10.1016/j.apenergy.2017.01.096

Liu, L., Fu, L., & Jiang, Y. (2010). Application of an exhaust heat recovery system for domestic hot water. Energy, 35(3), 1476-1481. doi:10.1016/j.energy.2009.12.004

Chen, W., Liang, S., Guo, Y., Cheng, K., Gui, X., & Tang, D. (2013). Investigation on the thermal performance and optimization of a heat pump water heater assisted by shower waste water. Energy and Buildings, 64, 172-181. doi:10.1016/j.enbuild.2013.04.021

McNabola, A., & Shields, K. (2013). Efficient drain water heat recovery in horizontal domestic shower drains. Energy and Buildings, 59, 44-49. doi:10.1016/j.enbuild.2012.12.026

Wong, L. T., Mui, K. W., & Guan, Y. (2010). Shower water heat recovery in high-rise residential buildings of Hong Kong. Applied Energy, 87(2), 703-709. doi:10.1016/j.apenergy.2009.08.008

Postrioti, L., Baldinelli, G., Bianchi, F., Buitoni, G., Maria, F. D., & Asdrubali, F. (2016). An experimental setup for the analysis of an energy recovery system from wastewater for heat pumps in civil buildings. Applied Thermal Engineering, 102, 961-971. doi:10.1016/j.applthermaleng.2016.04.016

Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., & Corberán, J. M. (2017). Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers. Energy, 127, 558-570. doi:10.1016/j.energy.2017.03.131

TRNSYS 17. 2009.

Fischer, D., Wolf, T., Scherer, J., & Wille-Haussmann, B. (2016). A stochastic bottom-up model for space heating and domestic hot water load profiles for German households. Energy and Buildings, 124, 120-128. doi:10.1016/j.enbuild.2016.04.069

Federal ministry for the environment nature conservation and nuclear safety. Wasserverbrauch im haushalt | media | BMU2013. https://www.bmu.de/media/wasserverbrauch-im-haushalt/(Accessed 15 November 2018).

Saker, D., Vahdati, M., Coker, P. J., & Millward, S. (2015). Assessing the benefits of domestic hot fill washing appliances. Energy and Buildings, 93, 282-294. doi:10.1016/j.enbuild.2015.02.027

Hasan, A. A., Goswami, D. Y., & Vijayaraghavan, S. (2002). First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source. Solar Energy, 73(5), 385-393. doi:10.1016/s0038-092x(02)00113-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem