Mostrar el registro sencillo del ítem
dc.contributor.author | Anderson-Alejandro Benites-Zelaya | es_ES |
dc.contributor.author | Soler Cabezas, José Luis | es_ES |
dc.contributor.author | Ferrer-Polonio, Eva | es_ES |
dc.contributor.author | Mendoza Roca, José Antonio | es_ES |
dc.contributor.author | Vincent Vela, Maria Cinta | es_ES |
dc.date.accessioned | 2021-06-12T03:33:35Z | |
dc.date.available | 2021-06-12T03:33:35Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167861 | |
dc.description.abstract | [EN] Nowadays, wastewater reuse in Mediterranean countries is necessary to cover the water demand. This contributes to the protection of the environment and encourages the circular economy. Due to increasingly strict regulation, the secondary effluent of a wastewater treatment plant requires further (tertiary) treatment to reach enough quality for its reuse in agriculture. Ultrafiltration is a membrane technique suitable for tertiary treatment. However, the most important drawback of ultrafiltration is membrane fouling. The aim of this work is to predict membrane fouling and ultrafiltered wastewater permeate quality for a particular membrane, using the information given by an exhaustive secondary effluent characterization. For this, ultrafiltration of real and simulated wastewaters and of their components after fractionation has been performed. In order to better characterize the secondary effluent, resin fractionation and further membrane ultrafiltration of the generated fractions and wastewater were performed. The results indicated that hydrophobic substances were lower than hydrophilic ones in the secondary effluent. Supelite DAX-8, Amberlite XAD-4 and Amberlite IRA-958 resins were found not to be specific for humic acids, proteins and carbohydrates, which are the main components of the effluent organic matter. Two models have been performed using statistics (partial least squares, PLS) and an artificial neural network (ANN), respectively. The results showed that the ANN model predicted permeate quality and membrane fouling with higher accuracy than PLS. | es_ES |
dc.description.sponsorship | This study was funded by Generalitat Valenciana (Project AICO 18/319). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Secondary effluent | es_ES |
dc.subject | Tertiary treatment | es_ES |
dc.subject | Ultrafiltration | es_ES |
dc.subject | Artificial neural network | es_ES |
dc.subject | Organic matter fractionation | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w12071975 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F319/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Anderson-Alejandro Benites-Zelaya; Soler Cabezas, JL.; Ferrer-Polonio, E.; Mendoza Roca, JA.; Vincent Vela, MC. (2020). A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration. Water. 12(7):1-17. https://doi.org/10.3390/w12071975 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w12071975 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\415597 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | European Commission—Environmenthttps://ec.europa.eu/environment/water/reuse.htm | es_ES |
dc.description.references | Rippey, S. R., & Watkins, W. D. (1992). Comparative Rates of Disinfection of Microbial Indicator Organisms in Chlorinated Sewage Effluents. Water Science and Technology, 26(9-11), 2185-2189. doi:10.2166/wst.1992.0693 | es_ES |
dc.description.references | Mounaouer, B., & Abdennaceur, H. (2016). Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. doi:10.1007/s11356-016-7173-4 | es_ES |
dc.description.references | Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3-22. doi:10.1016/j.watres.2005.10.030 | es_ES |
dc.description.references | Cervero-Aragó, S., Rodríguez-Martínez, S., Puertas-Bennasar, A., & Araujo, R. M. (2015). Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella. PLOS ONE, 10(8), e0134726. doi:10.1371/journal.pone.0134726 | es_ES |
dc.description.references | Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I., & Araujo, R. M. (2017). Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research, 126, 450-459. doi:10.1016/j.watres.2017.09.056 | es_ES |
dc.description.references | Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P., & Tylla, M. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119(1-3), 315-321. doi:10.1016/s0011-9164(98)00175-1 | es_ES |
dc.description.references | Lubello, C., Gori, R., de Bernardinis, A. M., & Simonelli, G. (2003). Ultrafiltration as tertiary treatment for industrial reuse. Water Supply, 3(4), 161-168. doi:10.2166/ws.2003.0058 | es_ES |
dc.description.references | Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157 | es_ES |
dc.description.references | Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011 | es_ES |
dc.description.references | Filloux, E., Labanowski, J., & Croue, J. P. (2012). Understanding the fouling of UF/MF hollow fibres of biologically treated wastewaters using advanced EfOM characterization and statistical tools. Bioresource Technology, 118, 460-468. doi:10.1016/j.biortech.2012.05.081 | es_ES |
dc.description.references | Shon, H. K., Vigneswaran, S., & Snyder, S. A. (2006). Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Critical Reviews in Environmental Science and Technology, 36(4), 327-374. doi:10.1080/10643380600580011 | es_ES |
dc.description.references | Wang, Z.-P., & Zhang, T. (2010). Characterization of soluble microbial products (SMP) under stressful conditions. Water Research, 44(18), 5499-5509. doi:10.1016/j.watres.2010.06.067 | es_ES |
dc.description.references | Ferrer-Polonio, E., White, K., Mendoza-Roca, J. A., & Bes-Piá, A. (2018). The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction. Journal of Environmental Management, 228, 205-212. doi:10.1016/j.jenvman.2018.09.036 | es_ES |
dc.description.references | Ferrer-Polonio, E., Fernández-Navarro, J., Alonso-Molina, J. L., Bes-Piá, A., & Mendoza-Roca, J. A. (2018). Influence of organic matter type in wastewater on soluble microbial products production and on further ultrafiltration. Journal of Chemical Technology & Biotechnology, 93(11), 3284-3291. doi:10.1002/jctb.5689 | es_ES |
dc.description.references | Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 15(5), 578-587. doi:10.1021/es00087a010 | es_ES |
dc.description.references | Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859-870. doi:10.1016/s0043-1354(01)00283-4 | es_ES |
dc.description.references | Zheng, X., Khan, M. T., & Croué, J.-P. (2014). Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Research, 65, 414-424. doi:10.1016/j.watres.2014.07.039 | es_ES |
dc.description.references | Ferrer-Polonio, E., McCabe, M., Mendoza-Roca, J. A., & Vincent-Vela, M.-C. (2018). Fractionation of secondary effluents of wastewater treatment plants in view of the evaluation of membrane fouling in a further ultrafiltration step. Journal of Chemical Technology & Biotechnology, 93(5), 1495-1501. doi:10.1002/jctb.5520 | es_ES |
dc.description.references | Chaloulakou, A., Grivas, G., & Spyrellis, N. (2003). Neural Network and Multiple Regression Models for PM10 Prediction in Athens: A Comparative Assessment. Journal of the Air & Waste Management Association, 53(10), 1183-1190. doi:10.1080/10473289.2003.10466276 | es_ES |
dc.description.references | Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1-2), 17-35. doi:10.1016/s0306-2619(00)00005-2 | es_ES |
dc.description.references | Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919-928. doi:10.1016/j.envsoft.2003.10.005 | es_ES |
dc.description.references | Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., & Ngo, H. H. (2006). Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. Journal of Membrane Science, 278(1-2), 232-238. doi:10.1016/j.memsci.2005.11.006 | es_ES |
dc.description.references | Marhaba, T. F. (2000). Fluorescence Technique for Rapid Identification of DOM Fractions. Journal of Environmental Engineering, 126(2), 145-152. doi:10.1061/(asce)0733-9372(2000)126:2(145) | es_ES |
dc.description.references | Teodosiu, C. (2000). Neural network models for ultrafiltration and backwashing. Water Research, 34(18), 4371-4380. doi:10.1016/s0043-1354(00)00217-7 | es_ES |
dc.description.references | Delgrange-Vincent, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., & Laîné, J. M. (2000). Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production. Desalination, 131(1-3), 353-362. doi:10.1016/s0011-9164(00)90034-1 | es_ES |
dc.description.references | Vincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027 | es_ES |
dc.description.references | Zuriaga-Agustí, E., Bes-Piá, A., Mendoza-Roca, J. A., & Alonso-Molina, J. L. (2013). Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Separation and Purification Technology, 112, 1-10. doi:10.1016/j.seppur.2013.03.048 | es_ES |
dc.description.references | Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749-1758. doi:10.1016/0043-1354(95)00323-1 | es_ES |
dc.description.references | Juang, L.-C., Tseng, D.-H., Chen, Y.-M., Semblante, G. U., & You, S.-J. (2013). The effect soluble microbial products (SMP) on the quality and fouling potential of MBR effluent. Desalination, 326, 96-102. doi:10.1016/j.desal.2013.07.005 | es_ES |
dc.description.references | Ayache, C., Pidou, M., Croué, J. P., Labanowski, J., Poussade, Y., Tazi-Pain, A., … Gernjak, W. (2013). Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment. Water Research, 47(8), 2633-2642. doi:10.1016/j.watres.2013.01.043 | es_ES |
dc.description.references | Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6 | es_ES |
dc.description.references | Haberkamp, J., Ernst, M., Böckelmann, U., Szewzyk, U., & Jekel, M. (2008). Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents. Water Research, 42(12), 3153-3161. doi:10.1016/j.watres.2008.03.007 | es_ES |
dc.description.references | Yigit, N. O., Harman, I., Civelekoglu, G., Koseoglu, H., Cicek, N., & Kitis, M. (2008). Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination, 231(1-3), 124-132. doi:10.1016/j.desal.2007.11.041 | es_ES |
dc.description.references | Yammine, S., Rabagliato, R., Vitrac, X., Mietton Peuchot, M., & Ghidossi, R. (2019). Selecting ultrafiltration membranes for fractionation of high added value compounds from grape pomace extracts. OENO One, 53(3). doi:10.20870/oeno-one.2019.53.3.2343 | es_ES |
dc.description.references | Babcock, J. J., & Brancaleon, L. (2013). Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. International Journal of Biological Macromolecules, 53, 42-53. doi:10.1016/j.ijbiomac.2012.10.030 | es_ES |
dc.description.references | Zirnsak, M. A., & Boger, D. V. (1998). Axisymmetric entry flow of semi-dilute xanthan gum solutions: prediction and experiment. Journal of Non-Newtonian Fluid Mechanics, 79(2-3), 105-136. doi:10.1016/s0377-0257(98)00104-9 | es_ES |
dc.description.references | Corbatón-Báguena, M.-J., Álvarez-Blanco, S., & Vincent-Vela, M.-C. (2015). Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination, 360, 87-96. doi:10.1016/j.desal.2015.01.019 | es_ES |
dc.description.references | Maruyama, T., Katoh, S., Nakajima, M., & Nabetani, H. (2001). Mechanism of bovine serum albumin aggregation during ultrafiltration. Biotechnology and Bioengineering, 75(2), 233-238. doi:10.1002/bit.10001 | es_ES |
dc.description.references | Soler-Cabezas, J. L., Torà-Grau, M., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment, 56(13), 3427-3437. doi:10.1080/19443994.2014.969320 | es_ES |
dc.description.references | Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028 | es_ES |
dc.description.references | Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020 | es_ES |
dc.description.references | Saha, S., & Das, C. (2015). Analysis of Fouling Characteristics and Flux Decline during Humic Acids Batch Ultrafiltration. Journal of Chemical Engineering & Process Technology, 06(05). doi:10.4172/2157-7048.1000252 | es_ES |
dc.description.references | Acero, J. L., Benitez, F. J., Leal, A. I., Real, F. J., & Teva, F. (2010). Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 177(1-3), 390-398. doi:10.1016/j.jhazmat.2009.12.045 | es_ES |
dc.description.references | Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040 | es_ES |
dc.description.references | Pao, H.-T. (2008). A comparison of neural network and multiple regression analysis in modeling capital structure. Expert Systems with Applications, 35(3), 720-727. doi:10.1016/j.eswa.2007.07.018 | es_ES |