- -

A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anderson-Alejandro Benites-Zelaya es_ES
dc.contributor.author Soler Cabezas, José Luis es_ES
dc.contributor.author Ferrer-Polonio, Eva es_ES
dc.contributor.author Mendoza Roca, José Antonio es_ES
dc.contributor.author Vincent Vela, Maria Cinta es_ES
dc.date.accessioned 2021-06-12T03:33:35Z
dc.date.available 2021-06-12T03:33:35Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167861
dc.description.abstract [EN] Nowadays, wastewater reuse in Mediterranean countries is necessary to cover the water demand. This contributes to the protection of the environment and encourages the circular economy. Due to increasingly strict regulation, the secondary effluent of a wastewater treatment plant requires further (tertiary) treatment to reach enough quality for its reuse in agriculture. Ultrafiltration is a membrane technique suitable for tertiary treatment. However, the most important drawback of ultrafiltration is membrane fouling. The aim of this work is to predict membrane fouling and ultrafiltered wastewater permeate quality for a particular membrane, using the information given by an exhaustive secondary effluent characterization. For this, ultrafiltration of real and simulated wastewaters and of their components after fractionation has been performed. In order to better characterize the secondary effluent, resin fractionation and further membrane ultrafiltration of the generated fractions and wastewater were performed. The results indicated that hydrophobic substances were lower than hydrophilic ones in the secondary effluent. Supelite DAX-8, Amberlite XAD-4 and Amberlite IRA-958 resins were found not to be specific for humic acids, proteins and carbohydrates, which are the main components of the effluent organic matter. Two models have been performed using statistics (partial least squares, PLS) and an artificial neural network (ANN), respectively. The results showed that the ANN model predicted permeate quality and membrane fouling with higher accuracy than PLS. es_ES
dc.description.sponsorship This study was funded by Generalitat Valenciana (Project AICO 18/319). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Secondary effluent es_ES
dc.subject Tertiary treatment es_ES
dc.subject Ultrafiltration es_ES
dc.subject Artificial neural network es_ES
dc.subject Organic matter fractionation es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12071975 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F319/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Anderson-Alejandro Benites-Zelaya; Soler Cabezas, JL.; Ferrer-Polonio, E.; Mendoza Roca, JA.; Vincent Vela, MC. (2020). A Step Forward to the Characterization of Secondary Effuents to Predict Membrane Fouling in a Subsequent Ultrafiltration. Water. 12(7):1-17. https://doi.org/10.3390/w12071975 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12071975 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\415597 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references European Commission—Environmenthttps://ec.europa.eu/environment/water/reuse.htm es_ES
dc.description.references Rippey, S. R., & Watkins, W. D. (1992). Comparative Rates of Disinfection of Microbial Indicator Organisms in Chlorinated Sewage Effluents. Water Science and Technology, 26(9-11), 2185-2189. doi:10.2166/wst.1992.0693 es_ES
dc.description.references Mounaouer, B., & Abdennaceur, H. (2016). Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. Environmental Science and Pollution Research, 23(19), 19861-19875. doi:10.1007/s11356-016-7173-4 es_ES
dc.description.references Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3-22. doi:10.1016/j.watres.2005.10.030 es_ES
dc.description.references Cervero-Aragó, S., Rodríguez-Martínez, S., Puertas-Bennasar, A., & Araujo, R. M. (2015). Effect of Common Drinking Water Disinfectants, Chlorine and Heat, on Free Legionella and Amoebae-Associated Legionella. PLOS ONE, 10(8), e0134726. doi:10.1371/journal.pone.0134726 es_ES
dc.description.references Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I., & Araujo, R. M. (2017). Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research, 126, 450-459. doi:10.1016/j.watres.2017.09.056 es_ES
dc.description.references Tchobanoglous, G., Darby, J., Bourgeous, K., McArdle, J., Genest, P., & Tylla, M. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119(1-3), 315-321. doi:10.1016/s0011-9164(98)00175-1 es_ES
dc.description.references Lubello, C., Gori, R., de Bernardinis, A. M., & Simonelli, G. (2003). Ultrafiltration as tertiary treatment for industrial reuse. Water Supply, 3(4), 161-168. doi:10.2166/ws.2003.0058 es_ES
dc.description.references Illueca-Muñoz, J., Mendoza-Roca, J. A., Iborra-Clar, A., Bes-Piá, A., Fajardo-Montañana, V., Martínez-Francisco, F. J., & Bernácer-Bonora, I. (2008). Study of different alternatives of tertiary treatments for wastewater reclamation to optimize the water quality for irrigation reuse. Desalination, 222(1-3), 222-229. doi:10.1016/j.desal.2007.01.157 es_ES
dc.description.references Delgado, S., Dı́az, F., Vera, L., Dı́az, R., & Elmaleh, S. (2004). Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. Journal of Membrane Science, 228(1), 55-63. doi:10.1016/j.memsci.2003.09.011 es_ES
dc.description.references Filloux, E., Labanowski, J., & Croue, J. P. (2012). Understanding the fouling of UF/MF hollow fibres of biologically treated wastewaters using advanced EfOM characterization and statistical tools. Bioresource Technology, 118, 460-468. doi:10.1016/j.biortech.2012.05.081 es_ES
dc.description.references Shon, H. K., Vigneswaran, S., & Snyder, S. A. (2006). Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Critical Reviews in Environmental Science and Technology, 36(4), 327-374. doi:10.1080/10643380600580011 es_ES
dc.description.references Wang, Z.-P., & Zhang, T. (2010). Characterization of soluble microbial products (SMP) under stressful conditions. Water Research, 44(18), 5499-5509. doi:10.1016/j.watres.2010.06.067 es_ES
dc.description.references Ferrer-Polonio, E., White, K., Mendoza-Roca, J. A., & Bes-Piá, A. (2018). The role of the operating parameters of SBR systems on the SMP production and on membrane fouling reduction. Journal of Environmental Management, 228, 205-212. doi:10.1016/j.jenvman.2018.09.036 es_ES
dc.description.references Ferrer-Polonio, E., Fernández-Navarro, J., Alonso-Molina, J. L., Bes-Piá, A., & Mendoza-Roca, J. A. (2018). Influence of organic matter type in wastewater on soluble microbial products production and on further ultrafiltration. Journal of Chemical Technology & Biotechnology, 93(11), 3284-3291. doi:10.1002/jctb.5689 es_ES
dc.description.references Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology, 15(5), 578-587. doi:10.1021/es00087a010 es_ES
dc.description.references Imai, A., Fukushima, T., Matsushige, K., Kim, Y.-H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36(4), 859-870. doi:10.1016/s0043-1354(01)00283-4 es_ES
dc.description.references Zheng, X., Khan, M. T., & Croué, J.-P. (2014). Contribution of effluent organic matter (EfOM) to ultrafiltration (UF) membrane fouling: Isolation, characterization, and fouling effect of EfOM fractions. Water Research, 65, 414-424. doi:10.1016/j.watres.2014.07.039 es_ES
dc.description.references Ferrer-Polonio, E., McCabe, M., Mendoza-Roca, J. A., & Vincent-Vela, M.-C. (2018). Fractionation of secondary effluents of wastewater treatment plants in view of the evaluation of membrane fouling in a further ultrafiltration step. Journal of Chemical Technology & Biotechnology, 93(5), 1495-1501. doi:10.1002/jctb.5520 es_ES
dc.description.references Chaloulakou, A., Grivas, G., & Spyrellis, N. (2003). Neural Network and Multiple Regression Models for PM10 Prediction in Athens: A Comparative Assessment. Journal of the Air & Waste Management Association, 53(10), 1183-1190. doi:10.1080/10473289.2003.10466276 es_ES
dc.description.references Kalogirou, S. A. (2000). Applications of artificial neural-networks for energy systems. Applied Energy, 67(1-2), 17-35. doi:10.1016/s0306-2619(00)00005-2 es_ES
dc.description.references Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919-928. doi:10.1016/j.envsoft.2003.10.005 es_ES
dc.description.references Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., & Ngo, H. H. (2006). Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. Journal of Membrane Science, 278(1-2), 232-238. doi:10.1016/j.memsci.2005.11.006 es_ES
dc.description.references Marhaba, T. F. (2000). Fluorescence Technique for Rapid Identification of DOM Fractions. Journal of Environmental Engineering, 126(2), 145-152. doi:10.1061/(asce)0733-9372(2000)126:2(145) es_ES
dc.description.references Teodosiu, C. (2000). Neural network models for ultrafiltration and backwashing. Water Research, 34(18), 4371-4380. doi:10.1016/s0043-1354(00)00217-7 es_ES
dc.description.references Delgrange-Vincent, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., & Laîné, J. M. (2000). Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production. Desalination, 131(1-3), 353-362. doi:10.1016/s0011-9164(00)90034-1 es_ES
dc.description.references Vincent Vela, M. C., Álvarez Blanco, S., Lora García, J., & Bergantiños Rodríguez, E. (2009). Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 149(1-3), 232-241. doi:10.1016/j.cej.2008.10.027 es_ES
dc.description.references Zuriaga-Agustí, E., Bes-Piá, A., Mendoza-Roca, J. A., & Alonso-Molina, J. L. (2013). Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Separation and Purification Technology, 112, 1-10. doi:10.1016/j.seppur.2013.03.048 es_ES
dc.description.references Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749-1758. doi:10.1016/0043-1354(95)00323-1 es_ES
dc.description.references Juang, L.-C., Tseng, D.-H., Chen, Y.-M., Semblante, G. U., & You, S.-J. (2013). The effect soluble microbial products (SMP) on the quality and fouling potential of MBR effluent. Desalination, 326, 96-102. doi:10.1016/j.desal.2013.07.005 es_ES
dc.description.references Ayache, C., Pidou, M., Croué, J. P., Labanowski, J., Poussade, Y., Tazi-Pain, A., … Gernjak, W. (2013). Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment. Water Research, 47(8), 2633-2642. doi:10.1016/j.watres.2013.01.043 es_ES
dc.description.references Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research, 33(14), 3063-3082. doi:10.1016/s0043-1354(99)00022-6 es_ES
dc.description.references Haberkamp, J., Ernst, M., Böckelmann, U., Szewzyk, U., & Jekel, M. (2008). Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents. Water Research, 42(12), 3153-3161. doi:10.1016/j.watres.2008.03.007 es_ES
dc.description.references Yigit, N. O., Harman, I., Civelekoglu, G., Koseoglu, H., Cicek, N., & Kitis, M. (2008). Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination, 231(1-3), 124-132. doi:10.1016/j.desal.2007.11.041 es_ES
dc.description.references Yammine, S., Rabagliato, R., Vitrac, X., Mietton Peuchot, M., & Ghidossi, R. (2019). Selecting ultrafiltration membranes for fractionation of high added value compounds from grape pomace extracts. OENO One, 53(3). doi:10.20870/oeno-one.2019.53.3.2343 es_ES
dc.description.references Babcock, J. J., & Brancaleon, L. (2013). Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength. International Journal of Biological Macromolecules, 53, 42-53. doi:10.1016/j.ijbiomac.2012.10.030 es_ES
dc.description.references Zirnsak, M. A., & Boger, D. V. (1998). Axisymmetric entry flow of semi-dilute xanthan gum solutions: prediction and experiment. Journal of Non-Newtonian Fluid Mechanics, 79(2-3), 105-136. doi:10.1016/s0377-0257(98)00104-9 es_ES
dc.description.references Corbatón-Báguena, M.-J., Álvarez-Blanco, S., & Vincent-Vela, M.-C. (2015). Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination, 360, 87-96. doi:10.1016/j.desal.2015.01.019 es_ES
dc.description.references Maruyama, T., Katoh, S., Nakajima, M., & Nabetani, H. (2001). Mechanism of bovine serum albumin aggregation during ultrafiltration. Biotechnology and Bioengineering, 75(2), 233-238. doi:10.1002/bit.10001 es_ES
dc.description.references Soler-Cabezas, J. L., Torà-Grau, M., Vincent-Vela, M. C., Mendoza-Roca, J. A., & Martínez-Francisco, F. J. (2014). Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms. Desalination and Water Treatment, 56(13), 3427-3437. doi:10.1080/19443994.2014.969320 es_ES
dc.description.references Vela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028 es_ES
dc.description.references Mah, S.-K., Chuah, C.-K., Cathie Lee, W. P., & Chai, S.-P. (2012). Ultrafiltration of palm oil–oleic acid–glycerin solutions: Fouling mechanism identification, fouling mechanism analysis and membrane characterizations. Separation and Purification Technology, 98, 419-431. doi:10.1016/j.seppur.2012.07.020 es_ES
dc.description.references Saha, S., & Das, C. (2015). Analysis of Fouling Characteristics and Flux Decline during Humic Acids Batch Ultrafiltration. Journal of Chemical Engineering & Process Technology, 06(05). doi:10.4172/2157-7048.1000252 es_ES
dc.description.references Acero, J. L., Benitez, F. J., Leal, A. I., Real, F. J., & Teva, F. (2010). Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials, 177(1-3), 390-398. doi:10.1016/j.jhazmat.2009.12.045 es_ES
dc.description.references Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279(1-3), 383-389. doi:10.1016/j.desal.2011.06.040 es_ES
dc.description.references Pao, H.-T. (2008). A comparison of neural network and multiple regression analysis in modeling capital structure. Expert Systems with Applications, 35(3), 720-727. doi:10.1016/j.eswa.2007.07.018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem