Sáez Blázquez, C., Piedelobo, L., Fernández-Hernández, J., Nieto, I. M., Martín, A. F., Lagüela, S., & González-Aguilera, D. (2020). Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger. Energies, 13(5), 1270. doi:10.3390/en13051270
Bae, S. M., Nam, Y., & Shim, B. O. (2018). Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties. Energies, 11(7), 1786. doi:10.3390/en11071786
Bilić, T., Raos, S., Ilak, P., Rajšl, I., & Pašičko, R. (2020). Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies, 13(5), 1026. doi:10.3390/en13051026
[+]
Sáez Blázquez, C., Piedelobo, L., Fernández-Hernández, J., Nieto, I. M., Martín, A. F., Lagüela, S., & González-Aguilera, D. (2020). Novel Experimental Device to Monitor the Ground Thermal Exchange in a Borehole Heat Exchanger. Energies, 13(5), 1270. doi:10.3390/en13051270
Bae, S. M., Nam, Y., & Shim, B. O. (2018). Feasibility Study of Ground Source Heat Pump System Considering Underground Thermal Properties. Energies, 11(7), 1786. doi:10.3390/en11071786
Bilić, T., Raos, S., Ilak, P., Rajšl, I., & Pašičko, R. (2020). Assessment of Geothermal Fields in the South Pannonian Basin System Using a Multi-Criteria Decision-Making Tool. Energies, 13(5), 1026. doi:10.3390/en13051026
Lamarche, L., Raymond, J., & Koubikana Pambou, C. (2017). Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design. Energies, 11(1), 38. doi:10.3390/en11010038
Vella, C., Borg, S. P., & Micallef, D. (2020). The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers. Energies, 13(3), 602. doi:10.3390/en13030602
Javed, S., & Spitler, J. D. (2016). Calculation of borehole thermal resistance. Advances in Ground-Source Heat Pump Systems, 63-95. doi:10.1016/b978-0-08-100311-4.00003-0
Serageldin, A. A., Sakata, Y., Katsura, T., & Nagano, K. (2018). Thermo-hydraulic performance of the U-tube borehole heat exchanger with a novel oval cross-section: Numerical approach. Energy Conversion and Management, 177, 406-415. doi:10.1016/j.enconman.2018.09.081
Hou, G., Taherian, H., Li, L., Fuse, J., & Moradi, L. (2020). System performance analysis of a hybrid ground source heat pump with optimal control strategies based on numerical simulations. Geothermics, 86, 101849. doi:10.1016/j.geothermics.2020.101849
Li, M., & Lai, A. C. K. (2013). Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method. Energy Conversion and Management, 65, 133-139. doi:10.1016/j.enconman.2012.07.013
De Carli, M., Galgaro, A., Pasqualetto, M., & Zarrella, A. (2014). Energetic and economic aspects of a heating and cooling district in a mild climate based on closed loop ground source heat pump. Applied Thermal Engineering, 71(2), 895-904. doi:10.1016/j.applthermaleng.2014.01.064
Lu, Q., Narsilio, G. A., Aditya, G. R., & Johnston, I. W. (2017). Economic analysis of vertical ground source heat pump systems in Melbourne. Energy, 125, 107-117. doi:10.1016/j.energy.2017.02.082
Nguyen, H. V., Law, Y. L. E., Alavy, M., Walsh, P. R., Leong, W. H., & Dworkin, S. B. (2014). An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America. Applied Energy, 125, 28-38. doi:10.1016/j.apenergy.2014.03.044
Garber, D., Choudhary, R., & Soga, K. (2013). Risk based lifetime costs assessment of a ground source heat pump (GSHP) system design: Methodology and case study. Building and Environment, 60, 66-80. doi:10.1016/j.buildenv.2012.11.011
Yoon, S., Lee, S.-R., Xue, J., Zosseder, K., Go, G.-H., & Park, H. (2015). Evaluation of the thermal efficiency and a cost analysis of different types of ground heat exchangers in energy piles. Energy Conversion and Management, 105, 393-402. doi:10.1016/j.enconman.2015.08.002
Emmi, G., Zarrella, A., De Carli, M., Donà, M., & Galgaro, A. (2017). Energy performance and cost analysis of some borehole heat exchanger configurations with different heat-carrier fluids in mild climates. Geothermics, 65, 158-169. doi:10.1016/j.geothermics.2016.09.006
Spitler, J. D., & Gehlin, S. E. A. (2015). Thermal response testing for ground source heat pump systems—An historical review. Renewable and Sustainable Energy Reviews, 50, 1125-1137. doi:10.1016/j.rser.2015.05.061
Bandos, T. V., Montero, Á., Fernández, E., Santander, J. L. G., Isidro, J. M., Pérez, J., … Urchueguía, J. F. (2009). Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 38(2), 263-270. doi:10.1016/j.geothermics.2009.01.003
Diao, N., Cui, P., & Fang, Z. (2002). The thermal resistance in a borehole of geothermal heat exchangers. Proceeding of International Heat Transfer Conference 12. doi:10.1615/ihtc12.3050
H. Tarrad, A. (2019). A Borehole Thermal Resistance Correlation for a Single Vertical DX U-Tube in Geothermal Energy Application. American Journal of Environmental Science and Engineering, 3(4), 75. doi:10.11648/j.ajese.20190304.12
Ould-Rouiss, M., Redjem-Saad, L., & Lauriat, G. (2009). Direct numerical simulation of turbulent heat transfer in annuli: Effect of heat flux ratio. International Journal of Heat and Fluid Flow, 30(4), 579-589. doi:10.1016/j.ijheatfluidflow.2009.02.018
Lundberg, R. E., McCuen, P. A., & Reynolds, W. C. (1963). Heat transfer in annular passages. Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures or heat fluxes. International Journal of Heat and Mass Transfer, 6(6), 495-529. doi:10.1016/0017-9310(63)90124-8
Badenes, B., Mateo Pla, M., Lemus-Zúñiga, L., Sáiz Mauleón, B., & Urchueguía, J. (2017). On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers. Energies, 10(9), 1328. doi:10.3390/en10091328
Urchueguía, J., Lemus-Zúñiga, L.-G., Oliver-Villanueva, J.-V., Badenes, B., Pla, M., & Cuevas, J. (2018). How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions. Energies, 11(12), 3347. doi:10.3390/en11123347
Código Técnico de la Edificación de España https://www.codigotecnico.org/
EED—Earth Energy Designer, v4 https://buildingphysics.com/eed-2/
GMSW 28 HK https://www.ochsner.com/en/ochsner-products/product-detail/gmsw-28-hk/
[-]