- -

Knowledge, innovation, and outcomes in craft beer: Theoretical framework and fuzzy-set qualitative comparative analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Knowledge, innovation, and outcomes in craft beer: Theoretical framework and fuzzy-set qualitative comparative analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cabrera-Flores, Mayer R. es_ES
dc.contributor.author Peris-Ortiz, Marta es_ES
dc.contributor.author León-Pozo, Alicia es_ES
dc.date.accessioned 2021-06-29T03:31:03Z
dc.date.available 2021-06-29T03:31:03Z
dc.date.issued 2020-05-29 es_ES
dc.identifier.issn 1064-1246 es_ES
dc.identifier.uri http://hdl.handle.net/10251/168474
dc.description.abstract [EN] This paper explores the relationship between knowledge, innovation, and profit-making in the craft beer industry in Baja California, Mexico. The research highlights the cultural nature of this industry, in which the depth of culture and tradition bolster the capacity for innovation. One source of interest in the study of cultural industries is the importance of businesses in regional development, as is happening in the Baja California region with craft beer. At its core, this study draws on the SECI model as a reference to highlight the different ways in which knowledge and learning combine to produce new forms of processes or products or break into new market segments. This empirical study is based on the fuzzy-set qualitative comparative analysis method (FsQCA), which serves to identify sequences or combinations of knowledge and learning that lead to innovation and profit. es_ES
dc.description.sponsorship We thank the National Council of Science and Technology (CONACYT) for the support and funding granted to develop Project 1241 in the 2015 call for proposals in Addressing National Problems. es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof Journal of Intelligent & Fuzzy Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Craft beer industry es_ES
dc.subject Tacit knowledge es_ES
dc.subject Explicit knowledge es_ES
dc.subject Formal learning es_ES
dc.subject Fuzzy-set Qualitative Comparative Analysis (FsQCA) es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Knowledge, innovation, and outcomes in craft beer: Theoretical framework and fuzzy-set qualitative comparative analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/JIFS-179630 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//1241/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Cabrera-Flores, MR.; Peris-Ortiz, M.; León-Pozo, A. (2020). Knowledge, innovation, and outcomes in craft beer: Theoretical framework and fuzzy-set qualitative comparative analysis. Journal of Intelligent & Fuzzy Systems. 38(5):5369-5378. https://doi.org/10.3233/JIFS-179630 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3233/JIFS-179630 es_ES
dc.description.upvformatpinicio 5369 es_ES
dc.description.upvformatpfin 5378 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\432737 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Behre, K.-E. (1999). The history of beer additives in Europe — A review. Vegetation History and Archaeobotany, 8(1-2), 35-48. doi:10.1007/bf02042841 es_ES
dc.description.references Chandler A. , Amatori F. , Hikino T. , Big Business and the Wealth of Nations, Cambridge University Press, United Kingdom, 1997. es_ES
dc.description.references DeFillippi, R., Grabher, G., & Jones, C. (2007). Introduction to paradoxes of creativity: managerial and organizational challenges in the cultural economy. Journal of Organizational Behavior, 28(5), 511-521. doi:10.1002/job.466 es_ES
dc.description.references Donate, M. J., Peña, I., & Sánchez de Pablo, J. D. (2015). HRM practices for human and social capital development: effects on innovation capabilities. The International Journal of Human Resource Management, 27(9), 928-953. doi:10.1080/09585192.2015.1047393 es_ES
dc.description.references Eisenhardt, K. M., Furr, N. R., & Bingham, C. B. (2010). CROSSROADS—Microfoundations of Performance: Balancing Efficiency and Flexibility in Dynamic Environments. Organization Science, 21(6), 1263-1273. doi:10.1287/orsc.1100.0564 es_ES
dc.description.references Helfat, C. E., & Peteraf, M. A. (2014). Managerial cognitive capabilities and the microfoundations of dynamic capabilities. Strategic Management Journal, 36(6), 831-850. doi:10.1002/smj.2247 es_ES
dc.description.references Jones, C., Svejenova, S., Pedersen, J. S., & Townley, B. (2016). Misfits, Mavericks and Mainstreams: Drivers of Innovation in the Creative Industries. Organization Studies, 37(6), 751-768. doi:10.1177/0170840616647671 es_ES
dc.description.references Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(1), 14-37. doi:10.1287/orsc.5.1.14 es_ES
dc.description.references Santos, F. M., & Eisenhardt, K. M. (2005). Organizational Boundaries and Theories of Organization. Organization Science, 16(5), 491-508. doi:10.1287/orsc.1050.0152 es_ES
dc.description.references Santos, F. M., & Eisenhardt, K. M. (2009). Constructing Markets and Shaping Boundaries: Entrepreneurial Power in Nascent Fields. Academy of Management Journal, 52(4), 643-671. doi:10.5465/amj.2009.43669892 es_ES
dc.description.references Schneider, M. R., Schulze-Bentrop, C., & Paunescu, M. (2009). Mapping the institutional capital of high-tech firms: A fuzzy-set analysis of capitalist variety and export performance. Journal of International Business Studies, 41(2), 246-266. doi:10.1057/jibs.2009.36 es_ES
dc.description.references Spender, J.-C. (2008). Organizational Learning and Knowledge Management: Whence and Whither? Management Learning, 39(2), 159-176. doi:10.1177/1350507607087582 es_ES
dc.description.references Teece, D. J. (2014). The Foundations of Enterprise Performance: Dynamic and Ordinary Capabilities in an (Economic) Theory of Firms. Academy of Management Perspectives, 28(4), 328-352. doi:10.5465/amp.2013.0116 es_ES
dc.description.references Woodside, A. G. (2013). Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. Journal of Business Research, 66(4), 463-472. doi:10.1016/j.jbusres.2012.12.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem