- -

Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion

Mostrar el registro completo del ítem

Payri, R.; Salvador, FJ.; Carreres, M.; Belmar-Gil, M. (2020). Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion. Fuel. 260:1-17. https://doi.org/10.1016/j.fuel.2019.115663

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168477

Ficheros en el ítem

Metadatos del ítem

Título: Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part II: Model validation, results of the simulations and discussion
Autor: Payri, Raul Salvador, Francisco Javier Carreres, Marcos Belmar-Gil, Mario
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] In this paper, a one-dimensional computational model of the flow in a common-rail injector is used to compute local variations of fuel temperature (including the temperature change produced upon expansion across the ...[+]
Palabras clave: Diesel , Injection , Computational , 1D modelling , Fuel temperature , Adiabatic flow
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Fuel. (issn: 0016-2361 )
DOI: 10.1016/j.fuel.2019.115663
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fuel.2019.115663
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/
Agradecimientos:
This work was partly sponsored by FEDER and the Spanish "Ministerio de Economia y Competitividad" in the frame of the project "Desarrollo de modelos de combustion y emisiones HPC para el analisis de plantas propulsivas de ...[+]
Tipo: Artículo

References

Gumus, M., Sayin, C., & Canakci, M. (2012). The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel, 95, 486-494. doi:10.1016/j.fuel.2011.11.020

Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. I., Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302-314. doi:10.1016/j.enconman.2014.12.004

Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energy Policy, 38(1), 1-3. doi:10.1016/j.enpol.2009.06.068 [+]
Gumus, M., Sayin, C., & Canakci, M. (2012). The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel, 95, 486-494. doi:10.1016/j.fuel.2011.11.020

Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. I., Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302-314. doi:10.1016/j.enconman.2014.12.004

Zecca, A., & Chiari, L. (2010). Fossil-fuel constraints on global warming. Energy Policy, 38(1), 1-3. doi:10.1016/j.enpol.2009.06.068

Wang, J., Feng, L., Tang, X., Bentley, Y., & Höök, M. (2017). The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis. Futures, 86, 58-72. doi:10.1016/j.futures.2016.04.007

Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035

Boccardo, G., Millo, F., Piano, A., Arnone, L., Manelli, S., Fagg, S., … Weber, J. (2019). Experimental investigation on a 3000 bar fuel injection system for a SCR-free non-road diesel engine. Fuel, 243, 342-351. doi:10.1016/j.fuel.2019.01.122

Mancaruso, E., Sequino, L., & Vaglieco, B. M. (2016). Analysis of the pilot injection running Common Rail strategies in a research diesel engine by means of infrared diagnostics and 1d model. Fuel, 178, 188-201. doi:10.1016/j.fuel.2016.03.066

Breda, S., D’Orrico, F., Berni, F., d’ Adamo, A., Fontanesi, S., Irimescu, A., & Merola, S. S. (2019). Experimental and numerical study on the adoption of split injection strategies to improve air-butanol mixture formation in a DISI optical engine. Fuel, 243, 104-124. doi:10.1016/j.fuel.2019.01.111

Wang, B., Pamminger, M., Vojtech, R., & Wallner, T. (2018). Impact of injection strategies on combustion characteristics, efficiency and emissions of gasoline compression ignition operation in a heavy-duty multi-cylinder engine. International Journal of Engine Research, 21(8), 1426-1440. doi:10.1177/1468087418801660

Sun, Z.-Y., Li, G.-X., Chen, C., Yu, Y.-S., & Gao, G.-X. (2015). Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Conversion and Management, 89, 843-861. doi:10.1016/j.enconman.2014.10.047

Torelli, R., Som, S., Pei, Y., Zhang, Y., & Traver, M. (2017). Influence of fuel properties on internal nozzle flow development in a multi-hole diesel injector. Fuel, 204, 171-184. doi:10.1016/j.fuel.2017.04.123

Salvador, F., De la Morena, J., Crialesi-Esposito, M., & Martínez-López, J. (2017). Comparative study of the internal flow in diesel injection nozzles at cavitating conditions at different needle lifts with steady and transient simulations approaches. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(8), 1060-1078. doi:10.1177/0954407017725672

Ihme, M., Ma, P. C., & Bravo, L. (2018). Large eddy simulations of diesel-fuel injection and auto-ignition at transcritical conditions. International Journal of Engine Research, 20(1), 58-68. doi:10.1177/1468087418819546

Desantes, J. M., Salvador, F. J., Carreres, M., & Martínez-López, J. (2014). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4), 407-423. doi:10.1177/0954407014542627

Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043

Salvador, F. J., Carreres, M., Crialesi-Esposito, M., & Plazas, A. H. (2017). Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1762-1781. doi:10.1177/0954407017735262

Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951

Dernotte, J., Hespel, C., Houille, S., Foucher, F., & Mounaim-Rousselle, C. (2012). INFLUENCE OF FUEL PROPERTIES ON THE DIESEL INJECTION PROCESS IN NONVAPORIZING CONDITIONS. Atomization and Sprays, 22(6), 461-492. doi:10.1615/atomizspr.2012004401

Park, Y., Hwang, J., Bae, C., Kim, K., Lee, J., & Pyo, S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics. Fuel, 162, 1-7. doi:10.1016/j.fuel.2015.09.008

Wang, Z., Ding, H., Wyszynski, M. L., Tian, J., & Xu, H. (2015). Experimental study on diesel fuel injection characteristics under cold start conditions with single and split injection strategies. Fuel Processing Technology, 131, 213-222. doi:10.1016/j.fuproc.2014.10.003

Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2017). Experimental assessment of the fuel heating and the validity of the assumption of adiabatic flow through the internal orifices of a diesel injector. Fuel, 188, 442-451. doi:10.1016/j.fuel.2016.10.061

Nurick, W. H. (1976). Orifice Cavitation and Its Effect on Spray Mixing. Journal of Fluids Engineering, 98(4), 681-687. doi:10.1115/1.3448452

Soteriou C, Andrews R, Smith M. Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization. SAE Pap 950080 1995. doi: 10.4271/950080.

Lichtarowicz, A., Duggins, R. K., & Markland, E. (1965). Discharge Coefficients for Incompressible Non-Cavitating Flow through Long Orifices. Journal of Mechanical Engineering Science, 7(2), 210-219. doi:10.1243/jmes_jour_1965_007_029_02

Franc J-P. The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation. Fluid Dyn. Cavitation Cavitating Turbopumps, vol. 496, Vienna: Springer; 2007, p. 1–41. doi: 10.1007/978-3-211-76669-9_1.

PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009

Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042

Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x

Theodorakakos, A., Strotos, G., Mitroglou, N., Atkin, C., & Gavaises, M. (2014). Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel, 123, 143-150. doi:10.1016/j.fuel.2014.01.050

Strotos, G., Koukouvinis, P., Theodorakakos, A., Gavaises, M., & Bergeles, G. (2015). Transient heating effects in high pressure Diesel injector nozzles. International Journal of Heat and Fluid Flow, 51, 257-267. doi:10.1016/j.ijheatfluidflow.2014.10.010

Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102

Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). Effect of fuel properties on diesel spray development in extreme cold conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(9), 1743-1753. doi:10.1243/09544070jauto844

Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management, 54(1), 122-132. doi:10.1016/j.enconman.2011.10.007

Moon, S., Gao, Y., Park, S., Wang, J., Kurimoto, N., & Nishijima, Y. (2015). Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection. Fuel, 150, 112-122. doi:10.1016/j.fuel.2015.01.097

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem