- -

Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions

Mostrar el registro completo del ítem

Pastor, JV.; García Martínez, A.; Mico Reche, C.; Garcia-Carrero, AA. (2020). Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions. Fuel. 260:1-11. https://doi.org/10.1016/j.fuel.2019.116377

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/168487

Ficheros en el ítem

Metadatos del ítem

Título: Experimental study of influence of Liquefied Petroleum Gas addition in Hydrotreated Vegetable Oil fuel on ignition delay, flame lift off length and soot emission under diesel-like conditions
Autor: Pastor, José V. García Martínez, Antonio Mico Reche, Carlos Garcia-Carrero, Alba Andreina
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The fundamental behaviour on ignition and combustion characteristics of blends of Hydrotreated Vegetable Oil and Liquid Petroleum Gas was investigated in a constant high pressure, high temperature combustion chamber, using ...[+]
Palabras clave: Hydrotreated vegetable oil , Liquefied petroleum gas , Dual fuel , Soot formation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Fuel. (issn: 0016-2361 )
DOI: 10.1016/j.fuel.2019.116377
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.fuel.2019.116377
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
Agradecimientos:
The authors acknowledge that this research work has been partly funded by the Government of Spain and FEDER under TRANCO project (TRA2017-87694-R) and by Universitat Politècnica de València through the Programa de Ayudas ...[+]
Tipo: Artículo

References

Roadmap to a Single European Transport Area – Towards a competitive and resource efficient. Transport System, White Paper COM(2011):144–final.

Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H. An Overview of Biodiesel and Petroleum Diesel Life Cycles, NREL/TP-580-24772.

Hasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74, 938-948. doi:10.1016/j.rser.2017.03.045 [+]
Roadmap to a Single European Transport Area – Towards a competitive and resource efficient. Transport System, White Paper COM(2011):144–final.

Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H. An Overview of Biodiesel and Petroleum Diesel Life Cycles, NREL/TP-580-24772.

Hasan, M. M., & Rahman, M. M. (2017). Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, 74, 938-948. doi:10.1016/j.rser.2017.03.045

Bhardwaj, O. P., Kolbeck, A. F., Kkoerfer, T., & Honkanen, M. (2013). Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System. SAE International Journal of Fuels and Lubricants, 6(1), 157-169. doi:10.4271/2013-01-1677

Chakraborty, A., Roy, S., & Banerjee, R. (2016). An experimental based ANN approach in mapping performance-emission characteristics of a diesel engine operating in dual-fuel mode with LPG. Journal of Natural Gas Science and Engineering, 28, 15-30. doi:10.1016/j.jngse.2015.11.024

Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE International Journal of Engines, 1(1), 1251-1262. doi:10.4271/2008-01-2500

Neste Oil, Hydrotreated vegetable oil, premium renewable biofuel for diesel engines, 2014.

Singh, D., Subramanian, K. A., Bal, R., Singh, S. P., & Badola, R. (2018). Combustion and emission characteristics of a light duty diesel engine fueled with hydro-processed renewable diesel. Energy, 154, 498-507. doi:10.1016/j.energy.2018.04.139

Zhong, W., Pachiannan, T., He, Z., Xuan, T., & Wang, Q. (2019). Experimental study of ignition, lift-off length and emission characteristics of diesel/hydrogenated catalytic biodiesel blends. Applied Energy, 235, 641-652. doi:10.1016/j.apenergy.2018.10.115

Tira, H. S., Herreros, J. M., Tsolakis, A., & Wyszynski, M. L. (2014). Influence of the addition of LPG-reformate and H2 on an engine dually fuelled with LPG–diesel, –RME and –GTL Fuels. Fuel, 118, 73-82. doi:10.1016/j.fuel.2013.10.065

Goto, S., Lee, D., Shakal, J., Harayama, N., Honjyo, F., & Ueno, H. (1999). Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles. SAE Technical Paper Series. doi:10.4271/1999-01-1513

Musthafa, M. M. (2019). A comparative study on coated and uncoated diesel engine performance and emissions running on dual fuel (LPG – biodiesel) with and without additive. Industrial Crops and Products, 128, 194-198. doi:10.1016/j.indcrop.2018.11.012

Hashimoto, K., Ohta, H., Hirasawa, T., Arai, M., & Tamura, M. (2002). Evaluation of Ignition Quality of LPG with Cetane Number Improver. SAE Technical Paper Series. doi:10.4271/2002-01-0870

Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548

Payri, R., Gimeno, J., Bardi, M., & Plazas, A. H. (2013). Study liquid length penetration results obtained with a direct acting piezo electric injector. Applied Energy, 106, 152-162. doi:10.1016/j.apenergy.2013.01.027

Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531

Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Möller, S. (2016). Application of optical diagnostics to the quantification of soot in n-alkane flames under diesel conditions. Combustion and Flame, 164, 212-223. doi:10.1016/j.combustflame.2015.11.018

Pastor, J., Garcia-Oliver, J. M., Garcia, A., & Nareddy, V. R. (2017). Characterization of Spray Evaporation and Mixing Using Blends of Commercial Gasoline and Diesel Fuels in Engine-Like Conditions. SAE Technical Paper Series. doi:10.4271/2017-01-0843

Pastor, J. V., Payri, R., Garcia-Oliver, J. M., & Briceño, F. J. (2013). Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 6(3), 1661-1676. doi:10.4271/2013-24-0041

Siebers, D. L. (1998). Liquid-Phase Fuel Penetration in Diesel Sprays. SAE Technical Paper Series. doi:10.4271/980809

ECN. Engine Combustion Network. https://ecn.sandia.gov/.

Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Briceño, F. J. (2014). An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combustion and Flame, 161(8), 2137-2150. doi:10.1016/j.combustflame.2014.01.022

Payri, R., Viera, J. P., Pei, Y., & Som, S. (2015). Experimental and numerical study of lift-off length and ignition delay of a two-component diesel surrogate. Fuel, 158, 957-967. doi:10.1016/j.fuel.2014.11.072

Reyes, M., Tinaut, F. V., Giménez, B., & Pastor, J. V. (2018). Effect of hydrogen addition on the OH* and CH* chemiluminescence emissions of premixed combustion of methane-air mixtures. International Journal of Hydrogen Energy, 43(42), 19778-19791. doi:10.1016/j.ijhydene.2018.09.005

Siebers, D. L., & Higgins, B. (2001). Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions. SAE Technical Paper Series. doi:10.4271/2001-01-0530

Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044

Payri, R., Salvador, F. J., Manin, J., & Viera, A. (2016). Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Applied Energy, 162, 541-550. doi:10.1016/j.apenergy.2015.10.118

Kook, S., & Pickett, L. M. (2012). Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel, 93, 539-548. doi:10.1016/j.fuel.2011.10.004

Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042

Payri, R., Viera, J. P., Gopalakrishnan, V., & Szymkowicz, P. G. (2017). The effect of nozzle geometry over ignition delay and flame lift-off of reacting direct-injection sprays for three different fuels. Fuel, 199, 76-90. doi:10.1016/j.fuel.2017.02.075

Pickett, L. M., Siebers, D. L., & Idicheria, C. A. (2005). Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets. SAE Technical Paper Series. doi:10.4271/2005-01-3843

Xuan, T., Desantes, J. M., Pastor, J. V., & Garcia-Oliver, J. M. (2019). Soot temperature characterization of spray a flames by combined extinction and radiation methodology. Combustion and Flame, 204, 290-303. doi:10.1016/j.combustflame.2019.03.023

Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Pastor, J. M. (2009). A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 156(1), 234-249. doi:10.1016/j.combustflame.2008.10.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem