Mostrar el registro sencillo del ítem
dc.contributor.author | Shen, C. | es_ES |
dc.contributor.author | Ardid-Ramírez, Joan Salvador | es_ES |
dc.contributor.author | Kaping, D. | es_ES |
dc.contributor.author | Westendorff, S. | es_ES |
dc.contributor.author | Everling, S. | es_ES |
dc.contributor.author | Womelsdorf, T. | es_ES |
dc.date.accessioned | 2021-07-01T03:32:06Z | |
dc.date.available | 2021-07-01T03:32:06Z | |
dc.date.issued | 2015-08 | es_ES |
dc.identifier.issn | 1047-3211 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/168594 | |
dc.description.abstract | [EN] Errors indicate the need to adjust attention for improved future performance. Detecting errors is thus a fundamental step to adjust and control attention. These functions have been associated with the dorsal anterior cingulate cortex (dACC), predicting that dACC cells should track the specific processing states giving rise to errors in order to identify which processing aspects need readjustment. Here, we tested this prediction by recording cells in the dACC and lateral prefrontal cortex (latPFC) of macaques performing an attention task that dissociated 3 processing stages. We found that, across prefrontal subareas, the dACC contained the largest cell populations encoding errors indicating (1) failures of inhibitory control of the attentional focus, (2) failures to prevent bottom-up distraction, and (3) lapses when implementing a choice. Error-locked firing in the dACC showed the earliest latencies across the PFC, emerged earlier than reward omission signals, and involved a significant proportion of putative inhibitory interneurons. Moreover, early onset error-locked response enhancement in the dACC was followed by transient prefrontal-cingulate inhibition, possibly reflecting active disengagement from task processing. These results suggest a functional specialization of the dACC to track and identify the actual processes that give rise to erroneous task outcomes, emphasizing its role to control attentional performance. | es_ES |
dc.description.sponsorship | This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Ministry of Economic Development and Innovation (MEDI) (T.W.). S.W. was funded by the "Deutsche Akademie der Naturforscher Leopoldina" (LPDS 2012-08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Cerebral Cortex | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Anterior cingulate cortex | es_ES |
dc.subject | Cognitive control | es_ES |
dc.subject | Dorsolateral prefrontal cortex | es_ES |
dc.subject | Error detection | es_ES |
dc.subject | Inhibitory interneurons | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/cercor/bhu028 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften//LPDS 2012-08/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Shen, C.; Ardid-Ramírez, JS.; Kaping, D.; Westendorff, S.; Everling, S.; Womelsdorf, T. (2015). Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition. Cerebral Cortex. 25(8):2213-2228. https://doi.org/10.1093/cercor/bhu028 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/cercor/bhu028 | es_ES |
dc.description.upvformatpinicio | 2213 | es_ES |
dc.description.upvformatpfin | 2228 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 24591526 | es_ES |
dc.identifier.pmcid | PMC4494031 | es_ES |
dc.relation.pasarela | S\434982 | es_ES |
dc.contributor.funder | Canadian Institutes of Health Research | es_ES |
dc.contributor.funder | Ontario Ministry of Economic Development and Innovation | es_ES |
dc.contributor.funder | Natural Sciences and Engineering Research Council of Canada | es_ES |
dc.contributor.funder | Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften | es_ES |
dc.description.references | Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14(10), 1338-1344. doi:10.1038/nn.2921 | es_ES |
dc.description.references | Amiez, C., Joseph, J.-P., & Procyk, E. (2005). Anterior cingulate error-related activity is modulated by predicted reward. European Journal of Neuroscience, 21(12), 3447-3452. doi:10.1111/j.1460-9568.2005.04170.x | es_ES |
dc.description.references | Asaad, W. F., & Eskandar, E. N. (2008). Achieving behavioral control with millisecond resolution in a high-level programming environment. Journal of Neuroscience Methods, 173(2), 235-240. doi:10.1016/j.jneumeth.2008.06.003 | es_ES |
dc.description.references | Asaad, W. F., & Eskandar, E. N. (2008). A flexible software tool for temporally-precise behavioral control in Matlab. Journal of Neuroscience Methods, 174(2), 245-258. doi:10.1016/j.jneumeth.2008.07.014 | es_ES |
dc.description.references | Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210-224. doi:10.1016/j.tins.2011.02.003 | es_ES |
dc.description.references | Barbas, H., & Zikopoulos, B. (2007). The Prefrontal Cortex and Flexible Behavior. The Neuroscientist, 13(5), 532-545. doi:10.1177/1073858407301369 | es_ES |
dc.description.references | BOTVINICK, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356-366. doi:10.3758/cabn.7.4.356 | es_ES |
dc.description.references | Bryden, D. W., Johnson, E. E., Tobia, S. C., Kashtelyan, V., & Roesch, M. R. (2011). Attention for Learning Signals in Anterior Cingulate Cortex. Journal of Neuroscience, 31(50), 18266-18274. doi:10.1523/jneurosci.4715-11.2011 | es_ES |
dc.description.references | Cavanagh, J. F., Gründler, T. O. J., Frank, M. J., & Allen, J. J. B. (2010). Altered cingulate sub-region activation accounts for task-related dissociation in ERN amplitude as a function of obsessive-compulsive symptoms. Neuropsychologia, 48(7), 2098-2109. doi:10.1016/j.neuropsychologia.2010.03.031 | es_ES |
dc.description.references | Cheng, M.-Y., & Hall, P. (1998). Calibrating the excess mass and dip tests of modality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(3), 579-589. doi:10.1111/1467-9868.00141 | es_ES |
dc.description.references | Corbetta, M., & Shulman, G. L. (2011). Spatial Neglect and Attention Networks. Annual Review of Neuroscience, 34(1), 569-599. doi:10.1146/annurev-neuro-061010-113731 | es_ES |
dc.description.references | Debener, S. (2005). Trial-by-Trial Coupling of Concurrent Electroencephalogram and Functional Magnetic Resonance Imaging Identifies the Dynamics of Performance Monitoring. Journal of Neuroscience, 25(50), 11730-11737. doi:10.1523/jneurosci.3286-05.2005 | es_ES |
dc.description.references | Dehaene, S., Kerszberg, M., & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences, 95(24), 14529-14534. doi:10.1073/pnas.95.24.14529 | es_ES |
dc.description.references | Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron, 76(6), 1057-1070. doi:10.1016/j.neuron.2012.12.002 | es_ES |
dc.description.references | Everling, S., & Johnston, K. (2013). Control of the superior colliculus by the lateral prefrontal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130068. doi:10.1098/rstb.2013.0068 | es_ES |
dc.description.references | Godlove, D. C., Emeric, E. E., Segovis, C. M., Young, M. S., Schall, J. D., & Woodman, G. F. (2011). Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys. Journal of Neuroscience, 31(44), 15640-15649. doi:10.1523/jneurosci.3349-11.2011 | es_ES |
dc.description.references | Gründler, T. O. J., Cavanagh, J. F., Figueroa, C. M., Frank, M. J., & Allen, J. J. B. (2009). Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia, 47(8-9), 1978-1987. doi:10.1016/j.neuropsychologia.2009.03.010 | es_ES |
dc.description.references | Hartigan, J. A., & Hartigan, P. M. (1985). The Dip Test of Unimodality. The Annals of Statistics, 13(1). doi:10.1214/aos/1176346577 | es_ES |
dc.description.references | Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise Signals in Anterior Cingulate Cortex: Neuronal Encoding of Unsigned Reward Prediction Errors Driving Adjustment in Behavior. Journal of Neuroscience, 31(11), 4178-4187. doi:10.1523/jneurosci.4652-10.2011 | es_ES |
dc.description.references | Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2009). Fictive Reward Signals in the Anterior Cingulate Cortex. Science, 324(5929), 948-950. doi:10.1126/science.1168488 | es_ES |
dc.description.references | Henderson, D. J., Parmeter, C. F., & Russell, R. R. (2008). Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests. Journal of Applied Econometrics, 23(5), 607-638. doi:10.1002/jae.1023 | es_ES |
dc.description.references | Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44(5), 548-559. doi:10.1016/j.cortex.2007.08.013 | es_ES |
dc.description.references | Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 59-70. doi:10.3758/cabn.9.1.59 | es_ES |
dc.description.references | Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122-128. doi:10.1016/j.tics.2011.12.008 | es_ES |
dc.description.references | Hutchison, R. M., Womelsdorf, T., Gati, J. S., Leung, L. S., Menon, R. S., & Everling, S. (2012). Resting-State Connectivity Identifies Distinct Functional Networks in Macaque Cingulate Cortex. Cerebral Cortex, 22(6), 1294-1308. doi:10.1093/cercor/bhr181 | es_ES |
dc.description.references | Hyman JM Hasselmo ME Seamans JK . 2011. What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms? Front Neurosci. 5:24. | es_ES |
dc.description.references | Hyman, J. M., Whitman, J., Emberly, E., Woodward, T. S., & Seamans, J. K. (2012). Action and Outcome Activity State Patterns in the Anterior Cingulate Cortex. Cerebral Cortex, 23(6), 1257-1268. doi:10.1093/cercor/bhs104 | es_ES |
dc.description.references | Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding. Science, 302(5642), 120-122. doi:10.1126/science.1087847 | es_ES |
dc.description.references | Johnston, K., Levin, H. M., Koval, M. J., & Everling, S. (2007). Top-Down Control-Signal Dynamics in Anterior Cingulate and Prefrontal Cortex Neurons following Task Switching. Neuron, 53(3), 453-462. doi:10.1016/j.neuron.2006.12.023 | es_ES |
dc.description.references | Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224 | es_ES |
dc.description.references | Kennerley, S. W., Behrens, T. E. J., & Wallis, J. D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14(12), 1581-1589. doi:10.1038/nn.2961 | es_ES |
dc.description.references | Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940-947. doi:10.1038/nn1724 | es_ES |
dc.description.references | Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior Cingulate Conflict Monitoring and Adjustments in Control. Science, 303(5660), 1023-1026. doi:10.1126/science.1089910 | es_ES |
dc.description.references | Khamassi, M., Enel, P., Dominey, P. F., & Procyk, E. (2013). Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters. Decision Making - Neural and Behavioural Approaches, 441-464. doi:10.1016/b978-0-444-62604-2.00022-8 | es_ES |
dc.description.references | Lachenbruch, P. A. (2002). Analysis of data with excess zeros. Statistical Methods in Medical Research, 11(4), 297-302. doi:10.1191/0962280202sm289ra | es_ES |
dc.description.references | Matsumoto, M., Matsumoto, K., Abe, H., & Tanaka, K. (2007). Medial prefrontal cell activity signaling prediction errors of action values. Nature Neuroscience, 10(5), 647-656. doi:10.1038/nn1890 | es_ES |
dc.description.references | Medalla, M., & Barbas, H. (2010). Anterior Cingulate Synapses in Prefrontal Areas 10 and 46 Suggest Differential Influence in Cognitive Control. Journal of Neuroscience, 30(48), 16068-16081. doi:10.1523/jneurosci.1773-10.2010 | es_ES |
dc.description.references | Medalla, M., & Barbas, H. (2009). Synapses with Inhibitory Neurons Differentiate Anterior Cingulate from Dorsolateral Prefrontal Pathways Associated with Cognitive Control. Neuron, 61(4), 609-620. doi:10.1016/j.neuron.2009.01.006 | es_ES |
dc.description.references | Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24(1), 167-202. doi:10.1146/annurev.neuro.24.1.167 | es_ES |
dc.description.references | Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal «theta». Progress in Neurobiology, 86(3), 156-185. doi:10.1016/j.pneurobio.2008.09.005 | es_ES |
dc.description.references | Morecraft, R. J., Stilwell-Morecraft, K. S., Cipolloni, P. B., Ge, J., McNeal, D. W., & Pandya, D. N. (2012). Cytoarchitecture and cortical connections of the anterior cingulate and adjacent somatomotor fields in the rhesus monkey. Brain Research Bulletin, 87(4-5), 457-497. doi:10.1016/j.brainresbull.2011.12.005 | es_ES |
dc.description.references | Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15(10), 453-459. doi:10.1016/j.tics.2011.07.011 | es_ES |
dc.description.references | Narayanan, N. S., Cavanagh, J. F., Frank, M. J., & Laubach, M. (2013). Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 16(12), 1888-1895. doi:10.1038/nn.3549 | es_ES |
dc.description.references | Narayanan, N. S., & Laubach, M. (2008). Neuronal Correlates of Post-Error Slowing in the Rat Dorsomedial Prefrontal Cortex. Journal of Neurophysiology, 100(1), 520-525. doi:10.1152/jn.00035.2008 | es_ES |
dc.description.references | Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 1-9. doi:10.1155/2011/156869 | es_ES |
dc.description.references | Passingham RE Wise SP . 2012. The neurobiology of the prefrontal cortex: anatomy, evolution, and the origin of insight. Oxford: Oxford University Press. | es_ES |
dc.description.references | Petrides, M., & Pandya, D. N. (2007). Efferent Association Pathways from the Rostral Prefrontal Cortex in the Macaque Monkey. Journal of Neuroscience, 27(43), 11573-11586. doi:10.1523/jneurosci.2419-07.2007 | es_ES |
dc.description.references | Phillips, J. M., Vinck, M., Everling, S., & Womelsdorf, T. (2013). A Long-Range Fronto-Parietal 5- to 10-Hz Network Predicts «Top-Down» Controlled Guidance in a Task-Switch Paradigm. Cerebral Cortex, 24(8), 1996-2008. doi:10.1093/cercor/bht050 | es_ES |
dc.description.references | Procyk, E., & Goldman-Rakic, P. S. (2006). Modulation of Dorsolateral Prefrontal Delay Activity during Self-Organized Behavior. Journal of Neuroscience, 26(44), 11313-11323. doi:10.1523/jneurosci.2157-06.2006 | es_ES |
dc.description.references | Quilodran, R., Rothé, M., & Procyk, E. (2008). Behavioral Shifts and Action Valuation in the Anterior Cingulate Cortex. Neuron, 57(2), 314-325. doi:10.1016/j.neuron.2007.11.031 | es_ES |
dc.description.references | Riesel, A., Weinberg, A., Endrass, T., Meyer, A., & Hajcak, G. (2013). The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks. Biological Psychology, 93(3), 377-385. doi:10.1016/j.biopsycho.2013.04.007 | es_ES |
dc.description.references | Rothe, M., Quilodran, R., Sallet, J., & Procyk, E. (2011). Coordination of High Gamma Activity in Anterior Cingulate and Lateral Prefrontal Cortical Areas during Adaptation. Journal of Neuroscience, 31(31), 11110-11117. doi:10.1523/jneurosci.1016-11.2011 | es_ES |
dc.description.references | Saleem KS Miller B Price JL . 2013. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. J Comp Neurol. doi:10.1002/cne.23498 . | es_ES |
dc.description.references | SALLET, J., QUILODRAN, R., ROTHE, M., VEZOLI, J., JOSEPH, J.-P., & PROCYK, E. (2007). Expectations, gains, and losses in the anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 327-336. doi:10.3758/cabn.7.4.327 | es_ES |
dc.description.references | Seo, H., & Lee, D. (2007). Temporal Filtering of Reward Signals in the Dorsal Anterior Cingulate Cortex during a Mixed-Strategy Game. Journal of Neuroscience, 27(31), 8366-8377. doi:10.1523/jneurosci.2369-07.2007 | es_ES |
dc.description.references | Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 79(2), 217-240. doi:10.1016/j.neuron.2013.07.007 | es_ES |
dc.description.references | Tanji, J., & Hoshi, E. (2008). Role of the Lateral Prefrontal Cortex in Executive Behavioral Control. Physiological Reviews, 88(1), 37-57. doi:10.1152/physrev.00014.2007 | es_ES |
dc.description.references | Totah, N. K. B., Kim, Y. B., Homayoun, H., & Moghaddam, B. (2009). Anterior Cingulate Neurons Represent Errors and Preparatory Attention within the Same Behavioral Sequence. Journal of Neuroscience, 29(20), 6418-6426. doi:10.1523/jneurosci.1142-09.2009 | es_ES |
dc.description.references | Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., & Anderson, C. H. (2001). An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex. Journal of the American Medical Informatics Association, 8(5), 443-459. doi:10.1136/jamia.2001.0080443 | es_ES |
dc.description.references | Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences, 107(11), 5248-5253. doi:10.1073/pnas.0906194107 | es_ES |