- -

Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author Pastor Enguídanos, José Manuel es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Martínez-Miracle-Muñoz, Enrique Carlos es_ES
dc.date.accessioned 2021-07-16T03:31:32Z
dc.date.available 2021-07-16T03:31:32Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0301-9322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169347
dc.description.abstract [EN] The present work analyses the effect of the eccentricity of diesel nozzle orifices over the spray behaviour by means of CFD simulations. Several orifice geometries with varying horizontal eccentricity (from 0.50 to 0.94) are selected. Their performance is assessed at a high injection pressure of 200 MPa, a 3 MPa back-pressure and non-evaporative conditions. The nozzle flow characteristics, including cavitation modelled by a Homogeneous Relaxation Model (HRM), are accounted for in the spray performance by means of a Sigma - Y model. The code is validated via two reference nozzles, the so called "Spray A" of the Engine Combustion Network plus a second nozzle from a production injector, and then extended to the eccentric geometries. The results and discussions include spray angle and penetration, air entrainment and flow parameters of the nozzle inner conditions versus the eccentricity value. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministerio de Ciencia, Innovacion y Universidades of the Spanish Government. The PhD studies by Enrique C. Martinez-Miracle have been funded by Agencia Estatal de Investigacion of the Spanish Government and the ESF (European Social Fund), project "Desarrollo de modelos de combustion y emisiones HPC para el analisis de plantas propulsivas de transporte sostenibles"(TRA2017-89139-C2-1-R) bymeans of the "Subprograma Estatal de Formacion del Programa Estatal de Promocion del Talento y su Empleabilidad en I+D+i". es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Multiphase Flow es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sigma - Y model es_ES
dc.subject HRM es_ES
dc.subject Eccentricity es_ES
dc.subject Diesel es_ES
dc.subject Spray es_ES
dc.subject Atomization es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijmultiphaseflow.2020.103338 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Salvador, FJ.; Pastor Enguídanos, JM.; De La Morena, J.; Martínez-Miracle-Muñoz, EC. (2020). Computational study on the influence of nozzle eccentricity in spray formation by means of Eulerian Sigma-Y coupled simulations in diesel injection nozzles. International Journal of Multiphase Flow. 129:1-19. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103338 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijmultiphaseflow.2020.103338 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 129 es_ES
dc.relation.pasarela S\412723 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Anez, J., Ahmed, A., Hecht, N., Duret, B., Reveillon, J., & Demoulin, F. X. (2019). Eulerian–Lagrangian spray atomization model coupled with interface capturing method for diesel injectors. International Journal of Multiphase Flow, 113, 325-342. doi:10.1016/j.ijmultiphaseflow.2018.10.009 es_ES
dc.description.references Araneo, L., Coghe, A., Brunello, G., & Cossali, G. E. (1999). Experimental Investigation of Gas Density Effects on Diesel Spray Penetration and Entrainment. SAE Technical Paper Series. doi:10.4271/1999-01-0525 es_ES
dc.description.references Battistoni, M., Duke, D. J., Swantek, A. B., Tilocco, F. Z., Powell, C. F., & Som, S. (2015). EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES. Atomization and Sprays, 25(6), 453-483. doi:10.1615/atomizspr.2015011076 es_ES
dc.description.references Bilicki, E. W., Ali, S., Machinery, F. F., Academy, P., 1996. Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow. 39 es_ES
dc.description.references Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F., & Schneider, T. (1995). Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles. SAE Technical Paper Series. doi:10.4271/950290 es_ES
dc.description.references Converge, 2020. Converge is a trade mark of convergent science. https://convergecfd.com. es_ES
dc.description.references Dally, B. B., Fletcher, D. F., & Masri, A. R. (1998). Flow and mixing fields of turbulent bluff-body jets and flames. Combustion Theory and Modelling, 2(2), 193-219. doi:10.1088/1364-7830/2/2/006 es_ES
dc.description.references David, C. W., 1994. Turbulence modelling CFD wilcox. es_ES
dc.description.references Dechoz, J., & Rozé, C. (2004). Surface tension measurement of fuels and alkanes at high pressure under different atmospheres. Applied Surface Science, 229(1-4), 175-182. doi:10.1016/j.apsusc.2004.01.057 es_ES
dc.description.references Desantes, J. M., García-Oliver, J. M., Pastor, J. M., Pandal, A., Baldwin, E., & Schmidt, D. P. (2016). Coupled/decoupled spray simulation comparison of the ECN spray a condition with the -Y Eulerian atomization model. International Journal of Multiphase Flow, 80, 89-99. doi:10.1016/j.ijmultiphaseflow.2015.12.002 es_ES
dc.description.references Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023 es_ES
dc.description.references Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951 es_ES
dc.description.references Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8 es_ES
dc.description.references Downar-Zapolski, P., Bilicki, Z., Bolle, L., & Franco, J. (1996). The non-equilibrium relaxation model for one-dimensional flashing liquid flow. International Journal of Multiphase Flow, 22(3), 473-483. doi:10.1016/0301-9322(95)00078-x es_ES
dc.description.references Dumouchel, C. (2008). On the experimental investigation on primary atomization of liquid streams. Experiments in Fluids, 45(3), 371-422. doi:10.1007/s00348-008-0526-0 es_ES
dc.description.references Espey, C., Dec, J. E., Litzinger, T. A., & Santavicca, D. A. (1997). Planar laser rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet. Combustion and Flame, 109(1-2), 65-86. doi:10.1016/s0010-2180(96)00126-5 es_ES
dc.description.references Garcia-Oliver, J. M., Pastor, J. M., Pandal, A., Trask, N., Baldwin, E., & Schmidt, D. P. (2013). DIESEL SPRAY CFD SIMULATIONS BASED ON THE Σ-Υ EULERIAN ATOMIZATION MODEL. Atomization and Sprays, 23(1), 71-95. doi:10.1615/atomizspr.2013007198 es_ES
dc.description.references Gimeno, J., Bracho, G., Martí-Aldaraví, P., & Peraza, J. E. (2016). Experimental study of the injection conditions influence over n-dodecane and diesel sprays with two ECN single-hole nozzles. Part I: Inert atmosphere. Energy Conversion and Management, 126, 1146-1156. doi:10.1016/j.enconman.2016.07.077 es_ES
dc.description.references He, Z., Zhang, L., Saha, K., Som, S., Duan, L., & Wang, Q. (2017). Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model. International Communications in Heat and Mass Transfer, 89, 98-107. doi:10.1016/j.icheatmasstransfer.2017.09.021 es_ES
dc.description.references Hiroyasu, H. (2000). SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS. Atomization and Sprays, 10(3-5), 511-527. doi:10.1615/atomizspr.v10.i3-5.130 es_ES
dc.description.references Hiroyasu, H., Arai, M., 1990. Struct. Fuel Spray. Diesel Engines, 2002, 10.4271/900475 es_ES
dc.description.references Ho, C.-M., & Gutmark, E. (1987). Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. Journal of Fluid Mechanics, 179, 383-405. doi:10.1017/s0022112087001587 es_ES
dc.description.references Hong, J. G., Ku, K. W., Kim, S. R., & Lee, C. W. (2010). EFFECT OF CAVITATION IN CIRCULAR NOZZLE AND ELLIPTICAL NOZZLES ON THE SPRAY CHARACTERISTIC. Atomization and Sprays, 20(10), 877-886. doi:10.1615/atomizspr.v20.i10.40 es_ES
dc.description.references Hoyas, S., Gil, A., Margot, X., Khuong-Anh, D., & Ravet, F. (2013). Evaluation of the Eulerian–Lagrangian Spray Atomization (ELSA) model in spray simulations: 2D cases. Mathematical and Computer Modelling, 57(7-8), 1686-1693. doi:10.1016/j.mcm.2011.11.006 es_ES
dc.description.references Husain, H. S., & Hussain, F. (1991). Elliptic jets. Part 2. Dynamics of coherent structures: pairing. Journal of Fluid Mechanics, 233, 439-482. doi:10.1017/s0022112091000551 es_ES
dc.description.references Hussain, F., & Husain, H. S. (1989). Elliptic jets. Part 1. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 208, 257-320. doi:10.1017/s0022112089002843 es_ES
dc.description.references Hussein, H. J., Capp, S. P., & George, W. K. (1994). Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal of Fluid Mechanics, 258, 31-75. doi:10.1017/s002211209400323x es_ES
dc.description.references Idicheria, C. A., & Pickett, L. M. (2011). Ignition, soot formation, and end-of-combustion transients in diesel combustion under high-EGR conditions. International Journal of Engine Research, 12(4), 376-392. doi:10.1177/1468087411399505 es_ES
dc.description.references Janicka, J., & Peters, N. (1982). Prediction of turbulent jet diffusion flame lift-off using a pdf transport equation. Symposium (International) on Combustion, 19(1), 367-374. doi:10.1016/s0082-0784(82)80208-7 es_ES
dc.description.references Kastengren, A., Powell, C. F., Liu, Z., & Wang, J. (2009). Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured with X-Ray Radiography. SAE Technical Paper Series. doi:10.4271/2009-01-0840 es_ES
dc.description.references Kastengren, A. L., Tilocco, F. Z., Duke, D. J., Powell, C. F., Zhang, X., & Moon, S. (2014). TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS. Atomization and Sprays, 24(3), 251-272. doi:10.1615/atomizspr.2013008642 es_ES
dc.description.references Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309 es_ES
dc.description.references Krothapalli, A., Baganoff, D., & Karamcheti, K. (1981). On the mixing of a rectangular jet. Journal of Fluid Mechanics, 107(-1), 201. doi:10.1017/s0022112081001730 es_ES
dc.description.references Ku, K. W., Hong, J. G., & Lee, C.-W. (2011). EFFECT OF INTERNAL FLOW STRUCTURE IN CIRCULAR AND ELLIPTICAL NOZZLES ON SPRAY CHARACTERISTICS. Atomization and Sprays, 21(8), 655-672. doi:10.1615/atomizspr.2012004192 es_ES
dc.description.references Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2), 131-137. doi:10.1016/0094-4548(74)90150-7 es_ES
dc.description.references Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2 es_ES
dc.description.references Lefebvre, A., McDonell, V., 2017. Atomization and sprays, second edition. https://www.crcpress.com/Atomization-and-Sprays-Second-Edition/Lefebvre-McDonell/p/book/9781498736251. 10.1016/0009-2509(90)87140-N es_ES
dc.description.references López, J. J., de la Garza, O. A., De la Morena, J., & Martínez-Martínez, S. (2017). Effects of cavitation in common-rail diesel nozzles on the mixing process. International Journal of Engine Research, 18(10), 1017-1034. doi:10.1177/1468087417697759 es_ES
dc.description.references MacGregor, S. A. (1991). Air entrainment in spray jets. International Journal of Heat and Fluid Flow, 12(3), 279-283. doi:10.1016/0142-727x(91)90064-3 es_ES
dc.description.references Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x es_ES
dc.description.references Manin, J., Bardi, M., Pickett, L. M., Dahms, R. N., & Oefelein, J. C. (2014). Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel, 134, 531-543. doi:10.1016/j.fuel.2014.05.060 es_ES
dc.description.references Matsson, A., & Andersson, S. (2002). The Effect of Non-Circular Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine. SAE Technical Paper Series. doi:10.4271/2002-01-2671 es_ES
dc.description.references Molina, S., Salvador, F. J., Carreres, M., & Jaramillo, D. (2014). A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles. Energy Conversion and Management, 79, 114-127. doi:10.1016/j.enconman.2013.12.015 es_ES
dc.description.references Naber, J., Siebers, D. L., 1996. Effect. Gas Density Vaporizat. Penetrat. Dispersion Diesel Sprays, 960034, 10.4271/960034 es_ES
dc.description.references Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010 es_ES
dc.description.references PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009 es_ES
dc.description.references Payri, R., Guardiola, C., Salvador, F. J., & Gimeno, J. (2004). CRITICAL CAVITATION NUMBER DETERMINATION IN DIESEL INJECTION NOZZLES. Experimental Techniques, 28(3), 49-52. doi:10.1111/j.1747-1567.2004.tb00164.x es_ES
dc.description.references Payri, R., Novella, R., Carreres, M., Belmar-Gil, M., 2019. Study about the influence of an automatic meshing algorithm on numerical simulations of a gaseous-fueled lean direct injection (LDI) gas turbine combustor in non-reactive conditions. https://ilass19.sciencesconf.org/247299. es_ES
dc.description.references Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043 es_ES
dc.description.references Payri, R., Salvador, J., Gimeno, J., & De la Morena, J. (2011). ANALYSIS OF DIESEL SPRAY ATOMIZATION BY MEANS OF A NEAR-NOZZLE FIELD VISUALIZATION TECHNIQUE. Atomization and Sprays, 21(9), 753-774. doi:10.1615/atomizspr.2012004051 es_ES
dc.description.references Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686 es_ES
dc.description.references Pickett, L. M., Manin, J., Kastengren, A., & Powell, C. (2014). Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography. SAE International Journal of Engines, 7(2), 1044-1053. doi:10.4271/2014-01-1412 es_ES
dc.description.references Pope, S. B. (1978). An explanation of the turbulent round-jet/plane-jet anomaly. AIAA Journal, 16(3), 279-281. doi:10.2514/3.7521 es_ES
dc.description.references Reitz, R. D. (1982). Mechanism of atomization of a liquid jet. Physics of Fluids, 25(10), 1730. doi:10.1063/1.863650 es_ES
dc.description.references Reitz, R. D., Diwakar, R., 1987. Structure of high-pressure fuel sprays. 10.4271/870598. es_ES
dc.description.references Roache, P. J. (1994). Perspective: A Method for Uniform Reporting of Grid Refinement Studies. Journal of Fluids Engineering, 116(3), 405-413. doi:10.1115/1.2910291 es_ES
dc.description.references Salvador, F. J., Carreres, M., Jaramillo, D., & Martínez-López, J. (2015). Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles. Energy Conversion and Management, 105, 1352-1365. doi:10.1016/j.enconman.2015.08.035 es_ES
dc.description.references Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102 es_ES
dc.description.references Salvador, F. J., Gimeno, J., Pastor, J. M., & Martí-Aldaraví, P. (2014). Effect of turbulence model and inlet boundary condition on the Diesel spray behavior simulated by an Eulerian Spray Atomization (ESA) model. International Journal of Multiphase Flow, 65, 108-116. doi:10.1016/j.ijmultiphaseflow.2014.06.003 es_ES
dc.description.references Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569 es_ES
dc.description.references Salvador, F. J., De la Morena, J., Bracho, G., & Jaramillo, D. (2018). Computational investigation of diesel nozzle internal flow during the complete injection event. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3). doi:10.1007/s40430-018-1074-z es_ES
dc.description.references Salvador, F. J., de la Morena, J., Carreres, M., & Jaramillo, D. (2017). Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(14), 1935-1944. doi:10.1177/0954407017692220 es_ES
dc.description.references Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Jaramillo, D. (2016). Numerical simulation of primary atomization in diesel spray at low injection pressure. Journal of Computational and Applied Mathematics, 291, 94-102. doi:10.1016/j.cam.2015.03.044 es_ES
dc.description.references Schmidt, D. P., Gopalakrishnan, S., & Jasak, H. (2010). Multi-dimensional simulation of thermal non-equilibrium channel flow. International Journal of Multiphase Flow, 36(4), 284-292. doi:10.1016/j.ijmultiphaseflow.2009.11.012 es_ES
dc.description.references Schulz, C., & Sick, V. (2005). Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31(1), 75-121. doi:10.1016/j.pecs.2004.08.002 es_ES
dc.description.references Engine combustion Network. https://ecn.sandia.gov/ecn-data-search/ (last access December 2017). es_ES
dc.description.references Senecal, K., Pomraning, E. D., Us, W. I., Jared, K., Horeb, M., Us, W. I., 2011. Method and apparatus for automated grid formation in multi-cell system dynamics models. es_ES
dc.description.references SFORZA, P. M., STEIGER, M. H., & TRENTACOSTE, N. (1966). Studies on three-dimensional viscous jets. AIAA Journal, 4(5), 800-806. doi:10.2514/3.3549 es_ES
dc.description.references Sun, Z.-Y., Li, G.-X., Chen, C., Yu, Y.-S., & Gao, G.-X. (2015). Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Conversion and Management, 89, 843-861. doi:10.1016/j.enconman.2014.10.047 es_ES
dc.description.references Tamaki, N., Shimizu, M., & Hiroyasu, H. (2001). ENHANCEMENT OF THE ATOMIZATION OF A LIQUID JET BY CAVITATION IN A NOZZLE HOLE. Atomization and Sprays, 11(2), 14. doi:10.1615/atomizspr.v11.i2.20 es_ES
dc.description.references Taub, G. N., Lee, H., Balachandar, S., & Sherif, S. A. (2013). A direct numerical simulation study of higher order statistics in a turbulent round jet. Physics of Fluids, 25(11), 115102. doi:10.1063/1.4829045 es_ES
dc.description.references TRENTACOSTE, N., & SFORZA, P. (1967). Further experimental results for three- dimensional free jets. AIAA Journal, 5(5), 885-891. doi:10.2514/3.4096 es_ES
dc.description.references Vallet, A., Burluka, A. A., & Borghi, R. (2001). DEVELOPMENT OF A EULERIAN MODEL FOR THE «ATOMIZATION» OF A LIQUID JET. Atomization and Sprays, 11(6), 24. doi:10.1615/atomizspr.v11.i6.20 es_ES
dc.description.references WAKURI, Y., FUJII, M., AMITANI, T., & TSUNEYA, R. (1960). Studies on the Penetration of Fuel Spray in a Diesel Engine. Bulletin of JSME, 3(9), 123-130. doi:10.1299/jsme1958.3.123 es_ES
dc.description.references Wang, Y., Lee, W. G., Reitz, R. D., & Diwakar, R. (2011). Numerical Simulation of Diesel Sprays Using an Eulerian-Lagrangian Spray and Atomization (ELSA) Model Coupled with Nozzle Flow. SAE Technical Paper Series. doi:10.4271/2011-01-0386 es_ES
dc.description.references Xue, Q., Battistoni, M., Powell, C. F., Longman, D. E., Quan, S. P., Pomraning, E., … Som, S. (2015). An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. International Journal of Multiphase Flow, 70, 77-88. doi:10.1016/j.ijmultiphaseflow.2014.11.012 es_ES
dc.description.references Yakhot, V., & Smith, L. M. (1992). The renormalization group, the ?-expansion and derivation of turbulence models. Journal of Scientific Computing, 7(1), 35-61. doi:10.1007/bf01060210 es_ES
dc.description.references Yu, S., Yin, B., Deng, W., Jia, H., Ye, Z., Xu, B., & Xu, H. (2018). Experimental study on the spray characteristics discharging from elliptical diesel nozzle at typical diesel engine conditions. Fuel, 221, 28-34. doi:10.1016/j.fuel.2018.02.090 es_ES
dc.description.references Yunyi, G., Changwen, L., Yezhou, H., & Zhijun, P. (1998). An Experimental Study on Droplet Size Characteristics and Air Entrainment of Elliptic Sprays. SAE Technical Paper Series. doi:10.4271/982546 es_ES
dc.description.references Zhao, H., Quan, S., Dai, M., Pomraning, E., Senecal, P. K., Xue, Q., … Som, S. (2014). Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects. Journal of Engineering for Gas Turbines and Power, 136(9). doi:10.1115/1.4027193 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem