Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. doi:10.1007/978-0-387-78365-9
BLAXTER, J. H. S., & TYTLER, P. (1978). Physiology and Function of the Swimbladder. Advances in Comparative Physiology and Biochemistry Volume 7, 311-367. doi:10.1016/b978-0-12-011507-5.50010-0
Boyra, G., Moreno, G., Sobradillo, B., Pérez-Arjona, I., Sancristobal, I., & Demer, D. A. (2018). Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES Journal of Marine Science, 75(5), 1790-1802. doi:10.1093/icesjms/fsy041
[+]
Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. doi:10.1007/978-0-387-78365-9
BLAXTER, J. H. S., & TYTLER, P. (1978). Physiology and Function of the Swimbladder. Advances in Comparative Physiology and Biochemistry Volume 7, 311-367. doi:10.1016/b978-0-12-011507-5.50010-0
Boyra, G., Moreno, G., Sobradillo, B., Pérez-Arjona, I., Sancristobal, I., & Demer, D. A. (2018). Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES Journal of Marine Science, 75(5), 1790-1802. doi:10.1093/icesjms/fsy041
Clay, C. S., & Horne, J. K. (1994). Acoustic models of fish: The Atlantic cod (Gadus morhua). The Journal of the Acoustical Society of America, 96(3), 1661-1668. doi:10.1121/1.410245
Costa, E. G. d. A., Godinho, L. M. C., Santiago, J. A. F., Mansur, W. J., & Peters, F. C. (2019). Application of the method of fundamental solutions to predict the acoustic performance of T-shaped thin barriers. Engineering Analysis with Boundary Elements, 99, 142-156. doi:10.1016/j.enganabound.2018.11.009
COSTA, E. G. A., GODINHO, L., PEREIRA, A., & SANTIAGO, J. A. F. (2012). PREDICTION OF ACOUSTIC WAVE PROPAGATION IN A SHALLOW WATER CONFIGURATION USING THE METHOD OF FUNDAMENTAL SOLUTIONS. Journal of Computational Acoustics, 20(04), 1250013. doi:10.1142/s0218396x12500130
Do, M. A., & Surti, A. M. (1990). Estimation of dorsal aspect target strength of deep‐water fish using a simple model of swimbladder backscattering. The Journal of the Acoustical Society of America, 87(4), 1588-1596. doi:10.1121/1.399406
Fairweather, G., Karageorghis, A., & Martin, P. A. (2003). The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, 27(7), 759-769. doi:10.1016/s0955-7997(03)00017-1
Fässler, S. M. M., Gorska, N., Ona, E., & Fernandes, P. G. (2008). Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fisheries Research, 92(2-3), 314-321. doi:10.1016/j.fishres.2008.01.013
Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. The Journal of the Acoustical Society of America, 67(6), 2084-2089. doi:10.1121/1.384452
Foote, K. G. (1980). Averaging of fish target strength functions. The Journal of the Acoustical Society of America, 67(2), 504-515. doi:10.1121/1.383915
Forland, T. N., Hobæk, H., Ona, E., & Korneliussen, R. J. (2014). Broad bandwidth acoustic backscattering from sandeel—measurements and finite element simulations. ICES Journal of Marine Science, 71(7), 1894-1903. doi:10.1093/icesjms/fsu010
Francis, D. T. I., & Foote, K. G. (2003). Depth-dependent target strengths of gadoids by the boundary-element method. The Journal of the Acoustical Society of America, 114(6), 3136-3146. doi:10.1121/1.1619982
Furusawa, M. (1988). Prolate spheroidal models for predicting general trends of fish target strength. Journal of the Acoustical Society of Japan (E), 9(1), 13-24. doi:10.1250/ast.9.13
Gastauer, S., Scoulding, B., Fässler, S. M. M., Benden, D. P. L. D., & Parsons, M. (2016). Target strength estimates of red emperor (Lutjanus sebae) with Bayesian parameter calibration. Aquatic Living Resources, 29(3), 301. doi:10.1051/alr/2016024
Gauthier, S., & Horne, J. K. (2004). Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models. Canadian Journal of Fisheries and Aquatic Sciences, 61(10), 1839-1850. doi:10.1139/f04-117
Godinho, L., Amado-Mendes, P., Carbajo, J., & Ramis-Soriano, J. (2015). 3D numerical modelling of acoustic horns using the method of fundamental solutions. Engineering Analysis with Boundary Elements, 51, 64-73. doi:10.1016/j.enganabound.2014.09.013
GODINHO, L. M. C., COSTA, E. G. A., PEREIRA, A. S. C., & SANTIAGO, J. A. F. (2012). SOME OBSERVATIONS ON THE BEHAVIOR OF THE METHOD OF FUNDAMENTAL SOLUTIONS IN 3D ACOUSTIC PROBLEMS. International Journal of Computational Methods, 09(04), 1250049. doi:10.1142/s0219876212500491
Gorska, N., & Ona, E. (2003). Modelling the acoustic effect of swimbladder compression in herring. ICES Journal of Marine Science, 60(3), 548-554. doi:10.1016/s1054-3139(03)00050-x
Gorska, N., Korneliussen, R. J., & Ona, E. (2007). Acoustic backscatter by schools of adult Atlantic mackerel. ICES Journal of Marine Science, 64(6), 1145-1151. doi:10.1093/icesjms/fsm094
Gorska, N., Ona, E., & Korneliussen, R. (2005). Acoustic backscattering by Atlantic mackerel as being representative of fish that lack a swimbladder. Backscattering by individual fish. ICES Journal of Marine Science, 62(5), 984-995. doi:10.1016/j.icesjms.2005.03.010
Hazen, E. L., & Horne, J. K. (2004). Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES Journal of Marine Science, 61(3), 363-377. doi:10.1016/j.icesjms.2004.01.005
Horne, J. K. (2000). Acoustic approaches to remote species identification: a review. Fisheries Oceanography, 9(4), 356-371. doi:10.1046/j.1365-2419.2000.00143.x
Horne, J. K. (2003). The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science, 60(5), 1063-1074. doi:10.1016/s1054-3139(03)00114-0
Jech, J. M. (2011). Interpretation of multi-frequency acoustic data: Effects of fish orientation. The Journal of the Acoustical Society of America, 129(1), 54-63. doi:10.1121/1.3514382
Jech, J. M., Horne, J. K., Chu, D., Demer, D. A., Francis, D. T. I., Gorska, N., … Sawada, K. (2015). Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. The Journal of the Acoustical Society of America, 138(6), 3742-3764. doi:10.1121/1.4937607
Kloser, R. ., & Horne, J. . (2003). Characterizing uncertainty in target-strength measurements of a deepwater fish: orange roughy (Hoplostethus atlanticus). ICES Journal of Marine Science, 60(3), 516-523. doi:10.1016/s1054-3139(03)00048-1
Knudsen, F. R., Fosseidengen, J. E., Oppedal, F., Karlsen, Ø., & Ona, E. (2004). Hydroacoustic monitoring of fish in sea cages: target strength (TS) measurements on Atlantic salmon (Salmo salar). Fisheries Research, 69(2), 205-209. doi:10.1016/j.fishres.2004.05.008
Kondapalli, P. S., Shippy, D. J., & Fairweather, G. (1992). Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. The Journal of the Acoustical Society of America, 91(4), 1844-1854. doi:10.1121/1.403714
Macaulay, G. J., Peña, H., Fässler, S. M. M., Pedersen, G., & Ona, E. (2013). Accuracy of the Kirchhoff-Approximation and Kirchhoff-Ray-Mode Fish Swimbladder Acoustic Scattering Models. PLoS ONE, 8(5), e64055. doi:10.1371/journal.pone.0064055
MacLennan, D. N. (1990). Acoustical measurement of fish abundance. The Journal of the Acoustical Society of America, 87(1), 1-15. doi:10.1121/1.399285
Mauro, M., Pérez-Arjona, I., Perez, E. J. B., Ceraulo, M., Bou-Cabo, M., Benson, T., … Buscaino, G. (2020). The effect of low frequency noise on the behaviour of juvenile Sparus aurata. The Journal of the Acoustical Society of America, 147(6), 3795-3807. doi:10.1121/10.0001255
Nesse, T. L., Hobæk, H., & Korneliussen, R. J. (2009). Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. ICES Journal of Marine Science, 66(6), 1169-1175. doi:10.1093/icesjms/fsp087
Okumura, T., Masuya, T., Takao, Y., & Sawada, K. (2003). Acoustic scattering by an arbitrarily shaped body: an application of the boundary-element method. ICES Journal of Marine Science, 60(3), 563-570. doi:10.1016/s1054-3139(03)00060-2
Ona, E. (1990). Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the United Kingdom, 70(1), 107-127. doi:10.1017/s002531540003424x
Ona, E. (2003). An expanded target-strength relationship for herring. ICES Journal of Marine Science, 60(3), 493-499. doi:10.1016/s1054-3139(03)00031-6
Peña, H., & Foote, K. G. (2008). Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES Journal of Marine Science, 65(9), 1751-1761. doi:10.1093/icesjms/fsn190
Pérez-Arjona, I., Godinho, L. M. C., & Espinosa, V. (2018). Numerical Simulation of Target Strength Measurements from Near to Far Field of Fish Using the Method of Fundamental Solutions. Acta Acustica united with Acustica, 104(1), 25-38. doi:10.3813/aaa.919142
Prestinicola, L., Boglione, C., Makridis, P., Spanò, A., Rimatori, V., Palamara, E., … Cataudella, S. (2013). Environmental Conditioning of Skeletal Anomalies Typology and Frequency in Gilthead Seabream (Sparus aurata L., 1758) Juveniles. PLoS ONE, 8(2), e55736. doi:10.1371/journal.pone.0055736
Reeder, D. B., Jech, J. M., & Stanton, T. K. (2004). Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling. The Journal of the Acoustical Society of America, 116(2), 747-761. doi:10.1121/1.1648318
Sawada, K., Takahashi, H., Abe, K., Ichii, T., Watanabe, K., & Takao, Y. (2009). Target-strength, length, and tilt-angle measurements of Pacific saury (Cololabis saira) and Japanese anchovy (Engraulis japonicus) using an acoustic-optical system. ICES Journal of Marine Science, 66(6), 1212-1218. doi:10.1093/icesjms/fsp079
Soliveres, E., Poveda, P., Estruch, V. D., Pérez-Arjona, I., Puig, V., Ordóñez, P., … Espinosa, V. (2017). Monitoring fish weight using pulse-echo waveform metrics. Aquacultural Engineering, 77, 125-131. doi:10.1016/j.aquaeng.2017.04.002
Solstorm, F., Solstorm, D., Oppedal, F., & Fjelldal, P. G. (2016). The vertebral column and exercise in Atlantic salmon — Regional effects. Aquaculture, 461, 9-16. doi:10.1016/j.aquaculture.2016.04.019
Stanton, T. K. (1989). Simple approximate formulas for backscattering of sound by spherical and elongated objects. The Journal of the Acoustical Society of America, 86(4), 1499-1510. doi:10.1121/1.398711
Yasuma, H., Sawada, K., Takao, Y., Miyashita, K., & Aoki, I. (2009). Swimbladder condition and target strength of myctophid fish in the temperate zone of the Northwest Pacific. ICES Journal of Marine Science, 67(1), 135-144. doi:10.1093/icesjms/fsp218
Ytteborg, E., Baeverfjord, G., Torgersen, J., Hjelde, K., & Takle, H. (2010). Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar). BMC Physiology, 10(1). doi:10.1186/1472-6793-10-12
[-]