- -

Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish

Mostrar el registro completo del ítem

Pérez Arjona, I.; Godinho, L.; Espinosa Roselló, V. (2020). Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish. ICES Journal of Marine Science. 77(7-8):2870-2881. https://doi.org/10.1093/icesjms/fsaa160

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169420

Ficheros en el ítem

Metadatos del ítem

Título: Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish
Autor: Pérez Arjona, Isabel Godinho, L. Espinosa Roselló, Víctor
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The method of fundamental solutions has been applied to evaluate the influence of fish models geometrical features on the target strength (TS) directivity and TS frequency response of swimbladdered fish. Simplified ...[+]
Palabras clave: Backbone , Fisheries acoustics , Fish biomass estimation , Numerical simulation , Swimbladder , Target strength
Derechos de uso: Cerrado
Fuente:
ICES Journal of Marine Science. (issn: 1054-3139 )
DOI: 10.1093/icesjms/fsaa160
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/icesjms/fsaa160
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2015-70446-R/ES/ACUSTICA Y BIOMETRIA DEL ATUN ROJO (THUNNUS THYNNUS)
info:eu-repo/grantAgreement/FCT//UIDP%2F04029%2F2020/
info:eu-repo/grantAgreement/FEDER/Programa Operacional Centro 2020/CENTRO-01-0145-FEDER-000006/EU/SUSpENsE Sustainable built Environment under Natural Hazards and Extreme Events/SUSpENsE/
info:eu-repo/grantAgreement/GVA//BEST%2F2018%2F119/
info:eu-repo/grantAgreement/GVA//BEST%2F2019%2F008/
Agradecimientos:
This work received funding from ACUSTUNA project ref. CTM2015-70446-R (MINECO/ERDF, EU). LG acknowledges the support by FCT-Fundacao para a Ciencia e a Tecnologia, I.P., within the scope of the research unit "Institute for ...[+]
Tipo: Artículo

References

Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. doi:10.1007/978-0-387-78365-9

BLAXTER, J. H. S., & TYTLER, P. (1978). Physiology and Function of the Swimbladder. Advances in Comparative Physiology and Biochemistry Volume 7, 311-367. doi:10.1016/b978-0-12-011507-5.50010-0

Boyra, G., Moreno, G., Sobradillo, B., Pérez-Arjona, I., Sancristobal, I., & Demer, D. A. (2018). Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES Journal of Marine Science, 75(5), 1790-1802. doi:10.1093/icesjms/fsy041 [+]
Au, W. W. L., & Hastings, M. C. (2008). Principles of Marine Bioacoustics. doi:10.1007/978-0-387-78365-9

BLAXTER, J. H. S., & TYTLER, P. (1978). Physiology and Function of the Swimbladder. Advances in Comparative Physiology and Biochemistry Volume 7, 311-367. doi:10.1016/b978-0-12-011507-5.50010-0

Boyra, G., Moreno, G., Sobradillo, B., Pérez-Arjona, I., Sancristobal, I., & Demer, D. A. (2018). Target strength of skipjack tuna (Katsuwanus pelamis) associated with fish aggregating devices (FADs). ICES Journal of Marine Science, 75(5), 1790-1802. doi:10.1093/icesjms/fsy041

Clay, C. S., & Horne, J. K. (1994). Acoustic models of fish: The Atlantic cod (Gadus morhua). The Journal of the Acoustical Society of America, 96(3), 1661-1668. doi:10.1121/1.410245

Costa, E. G. d. A., Godinho, L. M. C., Santiago, J. A. F., Mansur, W. J., & Peters, F. C. (2019). Application of the method of fundamental solutions to predict the acoustic performance of T-shaped thin barriers. Engineering Analysis with Boundary Elements, 99, 142-156. doi:10.1016/j.enganabound.2018.11.009

COSTA, E. G. A., GODINHO, L., PEREIRA, A., & SANTIAGO, J. A. F. (2012). PREDICTION OF ACOUSTIC WAVE PROPAGATION IN A SHALLOW WATER CONFIGURATION USING THE METHOD OF FUNDAMENTAL SOLUTIONS. Journal of Computational Acoustics, 20(04), 1250013. doi:10.1142/s0218396x12500130

Do, M. A., & Surti, A. M. (1990). Estimation of dorsal aspect target strength of deep‐water fish using a simple model of swimbladder backscattering. The Journal of the Acoustical Society of America, 87(4), 1588-1596. doi:10.1121/1.399406

Fairweather, G., Karageorghis, A., & Martin, P. A. (2003). The method of fundamental solutions for scattering and radiation problems. Engineering Analysis with Boundary Elements, 27(7), 759-769. doi:10.1016/s0955-7997(03)00017-1

Fässler, S. M. M., Gorska, N., Ona, E., & Fernandes, P. G. (2008). Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fisheries Research, 92(2-3), 314-321. doi:10.1016/j.fishres.2008.01.013

Foote, K. G. (1980). Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. The Journal of the Acoustical Society of America, 67(6), 2084-2089. doi:10.1121/1.384452

Foote, K. G. (1980). Averaging of fish target strength functions. The Journal of the Acoustical Society of America, 67(2), 504-515. doi:10.1121/1.383915

Forland, T. N., Hobæk, H., Ona, E., & Korneliussen, R. J. (2014). Broad bandwidth acoustic backscattering from sandeel—measurements and finite element simulations. ICES Journal of Marine Science, 71(7), 1894-1903. doi:10.1093/icesjms/fsu010

Francis, D. T. I., & Foote, K. G. (2003). Depth-dependent target strengths of gadoids by the boundary-element method. The Journal of the Acoustical Society of America, 114(6), 3136-3146. doi:10.1121/1.1619982

Furusawa, M. (1988). Prolate spheroidal models for predicting general trends of fish target strength. Journal of the Acoustical Society of Japan (E), 9(1), 13-24. doi:10.1250/ast.9.13

Gastauer, S., Scoulding, B., Fässler, S. M. M., Benden, D. P. L. D., & Parsons, M. (2016). Target strength estimates of red emperor (Lutjanus sebae) with Bayesian parameter calibration. Aquatic Living Resources, 29(3), 301. doi:10.1051/alr/2016024

Gauthier, S., & Horne, J. K. (2004). Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff-approximation models. Canadian Journal of Fisheries and Aquatic Sciences, 61(10), 1839-1850. doi:10.1139/f04-117

Godinho, L., Amado-Mendes, P., Carbajo, J., & Ramis-Soriano, J. (2015). 3D numerical modelling of acoustic horns using the method of fundamental solutions. Engineering Analysis with Boundary Elements, 51, 64-73. doi:10.1016/j.enganabound.2014.09.013

GODINHO, L. M. C., COSTA, E. G. A., PEREIRA, A. S. C., & SANTIAGO, J. A. F. (2012). SOME OBSERVATIONS ON THE BEHAVIOR OF THE METHOD OF FUNDAMENTAL SOLUTIONS IN 3D ACOUSTIC PROBLEMS. International Journal of Computational Methods, 09(04), 1250049. doi:10.1142/s0219876212500491

Gorska, N., & Ona, E. (2003). Modelling the acoustic effect of swimbladder compression in herring. ICES Journal of Marine Science, 60(3), 548-554. doi:10.1016/s1054-3139(03)00050-x

Gorska, N., Korneliussen, R. J., & Ona, E. (2007). Acoustic backscatter by schools of adult Atlantic mackerel. ICES Journal of Marine Science, 64(6), 1145-1151. doi:10.1093/icesjms/fsm094

Gorska, N., Ona, E., & Korneliussen, R. (2005). Acoustic backscattering by Atlantic mackerel as being representative of fish that lack a swimbladder. Backscattering by individual fish. ICES Journal of Marine Science, 62(5), 984-995. doi:10.1016/j.icesjms.2005.03.010

Hazen, E. L., & Horne, J. K. (2004). Comparing the modelled and measured target-strength variability of walleye pollock, Theragra chalcogramma. ICES Journal of Marine Science, 61(3), 363-377. doi:10.1016/j.icesjms.2004.01.005

Horne, J. K. (2000). Acoustic approaches to remote species identification: a review. Fisheries Oceanography, 9(4), 356-371. doi:10.1046/j.1365-2419.2000.00143.x

Horne, J. K. (2003). The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science, 60(5), 1063-1074. doi:10.1016/s1054-3139(03)00114-0

Jech, J. M. (2011). Interpretation of multi-frequency acoustic data: Effects of fish orientation. The Journal of the Acoustical Society of America, 129(1), 54-63. doi:10.1121/1.3514382

Jech, J. M., Horne, J. K., Chu, D., Demer, D. A., Francis, D. T. I., Gorska, N., … Sawada, K. (2015). Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. The Journal of the Acoustical Society of America, 138(6), 3742-3764. doi:10.1121/1.4937607

Kloser, R. ., & Horne, J. . (2003). Characterizing uncertainty in target-strength measurements of a deepwater fish: orange roughy (Hoplostethus atlanticus). ICES Journal of Marine Science, 60(3), 516-523. doi:10.1016/s1054-3139(03)00048-1

Knudsen, F. R., Fosseidengen, J. E., Oppedal, F., Karlsen, Ø., & Ona, E. (2004). Hydroacoustic monitoring of fish in sea cages: target strength (TS) measurements on Atlantic salmon (Salmo salar). Fisheries Research, 69(2), 205-209. doi:10.1016/j.fishres.2004.05.008

Kondapalli, P. S., Shippy, D. J., & Fairweather, G. (1992). Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. The Journal of the Acoustical Society of America, 91(4), 1844-1854. doi:10.1121/1.403714

Macaulay, G. J., Peña, H., Fässler, S. M. M., Pedersen, G., & Ona, E. (2013). Accuracy of the Kirchhoff-Approximation and Kirchhoff-Ray-Mode Fish Swimbladder Acoustic Scattering Models. PLoS ONE, 8(5), e64055. doi:10.1371/journal.pone.0064055

MacLennan, D. N. (1990). Acoustical measurement of fish abundance. The Journal of the Acoustical Society of America, 87(1), 1-15. doi:10.1121/1.399285

Mauro, M., Pérez-Arjona, I., Perez, E. J. B., Ceraulo, M., Bou-Cabo, M., Benson, T., … Buscaino, G. (2020). The effect of low frequency noise on the behaviour of juvenile Sparus aurata. The Journal of the Acoustical Society of America, 147(6), 3795-3807. doi:10.1121/10.0001255

Nesse, T. L., Hobæk, H., & Korneliussen, R. J. (2009). Measurements of acoustic-scattering spectra from the whole and parts of Atlantic mackerel. ICES Journal of Marine Science, 66(6), 1169-1175. doi:10.1093/icesjms/fsp087

Okumura, T., Masuya, T., Takao, Y., & Sawada, K. (2003). Acoustic scattering by an arbitrarily shaped body: an application of the boundary-element method. ICES Journal of Marine Science, 60(3), 563-570. doi:10.1016/s1054-3139(03)00060-2

Ona, E. (1990). Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the United Kingdom, 70(1), 107-127. doi:10.1017/s002531540003424x

Ona, E. (2003). An expanded target-strength relationship for herring. ICES Journal of Marine Science, 60(3), 493-499. doi:10.1016/s1054-3139(03)00031-6

Peña, H., & Foote, K. G. (2008). Modelling the target strength of Trachurus symmetricus murphyi based on high-resolution swimbladder morphometry using an MRI scanner. ICES Journal of Marine Science, 65(9), 1751-1761. doi:10.1093/icesjms/fsn190

Pérez-Arjona, I., Godinho, L. M. C., & Espinosa, V. (2018). Numerical Simulation of Target Strength Measurements from Near to Far Field of Fish Using the Method of Fundamental Solutions. Acta Acustica united with Acustica, 104(1), 25-38. doi:10.3813/aaa.919142

Prestinicola, L., Boglione, C., Makridis, P., Spanò, A., Rimatori, V., Palamara, E., … Cataudella, S. (2013). Environmental Conditioning of Skeletal Anomalies Typology and Frequency in Gilthead Seabream (Sparus aurata L., 1758) Juveniles. PLoS ONE, 8(2), e55736. doi:10.1371/journal.pone.0055736

Reeder, D. B., Jech, J. M., & Stanton, T. K. (2004). Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling. The Journal of the Acoustical Society of America, 116(2), 747-761. doi:10.1121/1.1648318

Sawada, K., Takahashi, H., Abe, K., Ichii, T., Watanabe, K., & Takao, Y. (2009). Target-strength, length, and tilt-angle measurements of Pacific saury (Cololabis saira) and Japanese anchovy (Engraulis japonicus) using an acoustic-optical system. ICES Journal of Marine Science, 66(6), 1212-1218. doi:10.1093/icesjms/fsp079

Soliveres, E., Poveda, P., Estruch, V. D., Pérez-Arjona, I., Puig, V., Ordóñez, P., … Espinosa, V. (2017). Monitoring fish weight using pulse-echo waveform metrics. Aquacultural Engineering, 77, 125-131. doi:10.1016/j.aquaeng.2017.04.002

Solstorm, F., Solstorm, D., Oppedal, F., & Fjelldal, P. G. (2016). The vertebral column and exercise in Atlantic salmon — Regional effects. Aquaculture, 461, 9-16. doi:10.1016/j.aquaculture.2016.04.019

Stanton, T. K. (1989). Simple approximate formulas for backscattering of sound by spherical and elongated objects. The Journal of the Acoustical Society of America, 86(4), 1499-1510. doi:10.1121/1.398711

Yasuma, H., Sawada, K., Takao, Y., Miyashita, K., & Aoki, I. (2009). Swimbladder condition and target strength of myctophid fish in the temperate zone of the Northwest Pacific. ICES Journal of Marine Science, 67(1), 135-144. doi:10.1093/icesjms/fsp218

Ytteborg, E., Baeverfjord, G., Torgersen, J., Hjelde, K., & Takle, H. (2010). Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar). BMC Physiology, 10(1). doi:10.1186/1472-6793-10-12

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem