- -

Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: The influence of farm management and on-field emission modelling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: The influence of farm management and on-field emission modelling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sinisterra-Solis, Nelson Kevin es_ES
dc.contributor.author Sanjuán Pellicer, María Nieves es_ES
dc.contributor.author Estruch-Guitart, Vicente es_ES
dc.contributor.author Clemente Polo, Gabriela es_ES
dc.date.accessioned 2021-07-23T03:31:24Z
dc.date.available 2021-07-23T03:31:24Z
dc.date.issued 2020-05-15 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169905
dc.description.abstract [EN] Environmental studies into wine from different protected designations of origin (PDO) highlight farming and packaging stages as those contributing the most to the total environmental impacts of this product. However, farming impact, not only depends on the agricultural practices but also on data quality and modelling complexity. By using the life cycle assessment methodology, a twofold goal is aimed. Firstly, to analyse the environmental profile of the most widespread viticultural practices in the Utiel-Requena PDO (Spain). The second aim is to evaluate the differences between the environmental impacts estimated by means of modelling approaches using generic information (Baseline modelling) versus those using site-specific information (Alternative modelling). As regards the agricultural practices and grape cultivars, eight systems were defined and assessed per kg of grape at the farm gate. The differences between farming systems and modelling approaches were statistically assessed. The results show that, regardless of the grape cultivar, organic systems are more environmentally friendly than the conventional ones (on average, the greatest differences occur in the ionizing radiation, marine eutrophication and land use, being the values for organic vineyards 1678%, 648% and 171% lower than those of the conventional ones, respectively), the results for the Bobal cultivar being better than those for the Tempranillo because of the higher yield (differences in yield around 1.500 kg ha¿1). The use of site-specific modelling approaches guarantees the precision of the analysis; however, for some impact categories, namely climate change, fine particulate matter formation, marine eutrophication and terrestrial acidification, the possibility of using general methodologies is open; in this way, the modelling efforts can be minimised, and the results would be consistent with those of more specific methodologies. The results also underline the need for a consensus within LCA practitioners on which methodologies to use in order to estimate on-field emissions taking into account both complexity reduction and accuracy improvement. es_ES
dc.description.sponsorship The authors gratefully acknowledge the Spanish Ministerio de Economia y Competitividad for the financial support under the project CTM 2013-47,340-R and the Universitat Politecnica de Valencia for providing the funds for N.K. Sinisterra-Solis's research contract through Subprogram 1 (PAID-01-18). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Conventional farming es_ES
dc.subject Organic farming es_ES
dc.subject Fertiliser emission es_ES
dc.subject Pesticide fate es_ES
dc.subject Environmental impacts es_ES
dc.subject Vineyard es_ES
dc.subject.classification ECONOMIA, SOCIOLOGIA Y POLITICA AGRARIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: The influence of farm management and on-field emission modelling es_ES
dc.type Artículo es_ES
dc.identifier.doi https://doi.org/10.1016/j.jenvman.2020.110325 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2013-47340-R/ES/DISEÑO DE UN INDICADOR DE SOSTENIBILIDAD DEL CICLO DE VIDA PARA LOS SISTEMAS AGRARIOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Sinisterra-Solis, NK.; Sanjuán Pellicer, MN.; Estruch-Guitart, V.; Clemente Polo, G. (2020). Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: The influence of farm management and on-field emission modelling. Journal of Environmental Management. 262:1-12. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110325 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion 10.1016/j.jenvman.2020.110325 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 262 es_ES
dc.identifier.pmid 32250806 es_ES
dc.relation.pasarela S\405229 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bacenetti, J., Fusi, A., Negri, M., Bocchi, S., & Fiala, M. (2016). Organic production systems: Sustainability assessment of rice in Italy. Agriculture, Ecosystems & Environment, 225, 33-44. doi:10.1016/j.agee.2016.03.046 es_ES
dc.description.references Bacenetti, J., Fusi, A., Negri, M., & Fiala, M. (2015). Impact of cropping system and soil tillage on environmental performance of cereal silage productions. Journal of Cleaner Production, 86, 49-59. doi:10.1016/j.jclepro.2014.08.052 es_ES
dc.description.references Balsari, P., Marucco, P., & Tamagnone, M. (2007). A test bench for the classification of boom sprayers according to drift risk. Crop Protection, 26(10), 1482-1489. doi:10.1016/j.cropro.2006.12.012 es_ES
dc.description.references Bartocci, P., Fantozzi, P., & Fantozzi, F. (2017). Environmental impact of Sagrantino and Grechetto grapes cultivation for wine and vinegar production in central Italy. Journal of Cleaner Production, 140, 569-580. doi:10.1016/j.jclepro.2016.04.090 es_ES
dc.description.references Boulay, A.-M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., … Pfister, S. (2017). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). The International Journal of Life Cycle Assessment, 23(2), 368-378. doi:10.1007/s11367-017-1333-8 es_ES
dc.description.references Brentrup, F., Küsters, J., Lammel, J., & Kuhlmann, H. (2000). Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The International Journal of Life Cycle Assessment, 5(6). doi:10.1007/bf02978670 es_ES
dc.description.references Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., … Delécolle, R. (1998). STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie, 18(5-6), 311-346. doi:10.1051/agro:19980501 es_ES
dc.description.references Cayuela, M. L., Aguilera, E., Sanz-Cobena, A., Adams, D. C., Abalos, D., Barton, L., … Lassaletta, L. (2017). Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems & Environment, 238, 25-35. doi:10.1016/j.agee.2016.10.006 es_ES
dc.description.references Felsot, A. S., Unsworth, J. B., Linders, J. B. H. J., Roberts, G., Rautman, D., Harris, C., & Carazo, E. (2010). Agrochemical spray drift; assessment and mitigation—A review*. Journal of Environmental Science and Health, Part B, 46(1), 1-23. doi:10.1080/03601234.2010.515161 es_ES
dc.description.references Fenollosa, M. L., Ribal, J., Lidón, A., Bautista, I., Juraske, R., Clemente, G., & Sanjuan, N. (2014). Influence of Management Practices on Economic and Environmental Performance of Crops. A Case Study in Spanish Horticulture. Agroecology and Sustainable Food Systems, 38(6), 635-659. doi:10.1080/21683565.2014.896302 es_ES
dc.description.references Flor, F. J., Leiva, F. J., García, J. L., Martínez, E., Jiménez, E., & Blanco, J. (2018). Environmental Impact of Wine Aging Process in Oak Barrels in Wineries of La Rioja (Spain). American Journal of Enology and Viticulture, 69(3), 302-306. doi:10.5344/ajev.2018.17076 es_ES
dc.description.references Fusi, A., Guidetti, R., & Benedetto, G. (2014). Delving into the environmental aspect of a Sardinian white wine: From partial to total life cycle assessment. Science of The Total Environment, 472, 989-1000. doi:10.1016/j.scitotenv.2013.11.148 es_ES
dc.description.references Gazulla, C., Raugei, M., & Fullana-i-Palmer, P. (2010). Taking a life cycle look at crianza wine production in Spain: where are the bottlenecks? The International Journal of Life Cycle Assessment, 15(4), 330-337. doi:10.1007/s11367-010-0173-6 es_ES
dc.description.references Gil, Y., & Sinfort, C. (2005). Emission of pesticides to the air during sprayer application: A bibliographic review. Atmospheric Environment, 39(28), 5183-5193. doi:10.1016/j.atmosenv.2005.05.019 es_ES
dc.description.references Goglio, P., Smith, W. N., Grant, B. B., Desjardins, R. L., Gao, X., Hanis, K., … Williams, A. G. (2018). A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. Journal of Cleaner Production, 172, 4010-4017. doi:10.1016/j.jclepro.2017.03.133 es_ES
dc.description.references González-García, S., Silva, F. J., Moreira, M. T., Pascual, R. C., Lozano, R. G., Gabarrell, X., … Feijoo, G. (2011). Combined application of LCA and eco-design for the sustainable production of wood boxes for wine bottles storage. The International Journal of Life Cycle Assessment, 16(3), 224-237. doi:10.1007/s11367-011-0261-2 es_ES
dc.description.references Hauschild, M. Z., Huijbregts, M., Jolliet, O., Macleod, M., Margni, M., van de Meent, D., … McKone, T. E. (2008). Building a Model Based on Scientific Consensus for Life Cycle Impact Assessment of Chemicals: The Search for Harmony and Parsimony. Environmental Science & Technology, 42(19), 7032-7037. doi:10.1021/es703145t es_ES
dc.description.references Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., … van Zelm, R. (2016). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. doi:10.1007/s11367-016-1246-y es_ES
dc.description.references Juraske, R., & Sanjuán, N. (2011). Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain. Chemosphere, 82(7), 956-962. doi:10.1016/j.chemosphere.2010.10.081 es_ES
dc.description.references Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of The Total Environment, 610-611, 997-1009. doi:10.1016/j.scitotenv.2017.08.077 es_ES
dc.description.references Margni, M., Rossier, D., Crettaz, P., & Jolliet, O. (2002). Life cycle impact assessment of pesticides on human health and ecosystems. Agriculture, Ecosystems & Environment, 93(1-3), 379-392. doi:10.1016/s0167-8809(01)00336-x es_ES
dc.description.references Martins, A. A., Araújo, A. R., Graça, A., Caetano, N. S., & Mata, T. M. (2018). Towards sustainable wine: Comparison of two Portuguese wines. Journal of Cleaner Production, 183, 662-676. doi:10.1016/j.jclepro.2018.02.057 es_ES
dc.description.references Meier, M. S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., & Stolze, M. (2015). Environmental impacts of organic and conventional agricultural products – Are the differences captured by life cycle assessment? Journal of Environmental Management, 149, 193-208. doi:10.1016/j.jenvman.2014.10.006 es_ES
dc.description.references Mohseni, P., Borghei, A. M., & Khanali, M. (2018). Coupled life cycle assessment and data envelopment analysis for mitigation of environmental impacts and enhancement of energy efficiency in grape production. Journal of Cleaner Production, 197, 937-947. doi:10.1016/j.jclepro.2018.06.243 es_ES
dc.description.references Neto, B., Dias, A. C., & Machado, M. (2012). Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. The International Journal of Life Cycle Assessment, 18(3), 590-602. doi:10.1007/s11367-012-0518-4 es_ES
dc.description.references Peña, N., Knudsen, M. T., Fantke, P., Antón, A., & Hermansen, J. E. (2019). Freshwater ecotoxicity assessment of pesticide use in crop production: Testing the influence of modeling choices. Journal of Cleaner Production, 209, 1332-1341. doi:10.1016/j.jclepro.2018.10.257 es_ES
dc.description.references Pereyra, M. A., Fernández, D. S., Marcial, E. R., & Puchulu, M. E. (2020). Agricultural land degradation by piping erosion in Chaco Plain, Northwestern Argentina. CATENA, 185, 104295. doi:10.1016/j.catena.2019.104295 es_ES
dc.description.references Perrin, A., Basset-Mens, C., & Gabrielle, B. (2014). Life cycle assessment of vegetable products: a review focusing on cropping systems diversity and the estimation of field emissions. The International Journal of Life Cycle Assessment, 19(6), 1247-1263. doi:10.1007/s11367-014-0724-3 es_ES
dc.description.references Perrin, A., Basset-Mens, C., Huat, J., & Gabrielle, B. (2017). The variability of field emissions is critical to assessing the environmental impacts of vegetables: A Benin case-study. Journal of Cleaner Production, 153, 104-113. doi:10.1016/j.jclepro.2017.03.159 es_ES
dc.description.references Peter, C., Fiore, A., Hagemann, U., Nendel, C., & Xiloyannis, C. (2016). Improving the accounting of field emissions in the carbon footprint of agricultural products: a comparison of default IPCC methods with readily available medium-effort modeling approaches. The International Journal of Life Cycle Assessment, 21(6), 791-805. doi:10.1007/s11367-016-1056-2 es_ES
dc.description.references Ponstein, H. J., Meyer-Aurich, A., & Prochnow, A. (2019). Greenhouse gas emissions and mitigation options for German wine production. Journal of Cleaner Production, 212, 800-809. doi:10.1016/j.jclepro.2018.11.206 es_ES
dc.description.references Prosdocimi, M., Cerdà, A., & Tarolli, P. (2016). Soil water erosion on Mediterranean vineyards: A review. CATENA, 141, 1-21. doi:10.1016/j.catena.2016.02.010 es_ES
dc.description.references Renouf, M. A., Renaud-Gentié, C., Perrin, A., van der Werf, H. M. G., Kanyarushoki, C., & Jourjon, F. (2018). Effectiveness criteria for customised agricultural life cycle assessment tools. Journal of Cleaner Production, 179, 246-254. doi:10.1016/j.jclepro.2017.12.170 es_ES
dc.description.references Ribal, J., Ramírez-Sanz, C., Estruch, V., Clemente, G., & Sanjuán, N. (2016). Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain). The International Journal of Life Cycle Assessment, 22(4), 571-586. doi:10.1007/s11367-016-1048-2 es_ES
dc.description.references Rives, J., Fernandez-Rodriguez, I., Rieradevall, J., & Gabarrell, X. (2011). Environmental analysis of the production of natural cork stoppers in southern Europe (Catalonia – Spain). Journal of Cleaner Production, 19(2-3), 259-271. doi:10.1016/j.jclepro.2010.10.001 es_ES
dc.description.references Rodrigo-Comino, J., Brevik, E. C., & Cerdà, A. (2018). The age of vines as a controlling factor of soil erosion processes in Mediterranean vineyards. Science of The Total Environment, 616-617, 1163-1173. doi:10.1016/j.scitotenv.2017.10.204 es_ES
dc.description.references Rosenbaum, R. K., Bachmann, T. M., Gold, L. S., Huijbregts, M. A. J., Jolliet, O., Juraske, R., … Hauschild, M. Z. (2008). USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The International Journal of Life Cycle Assessment, 13(7), 532-546. doi:10.1007/s11367-008-0038-4 es_ES
dc.description.references Schmidt Rivera, X. C., Bacenetti, J., Fusi, A., & Niero, M. (2017). The influence of fertiliser and pesticide emissions model on life cycle assessment of agricultural products: The case of Danish and Italian barley. Science of The Total Environment, 592, 745-757. doi:10.1016/j.scitotenv.2016.11.183 es_ES
dc.description.references Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(7397), 229-232. doi:10.1038/nature11069 es_ES
dc.description.references Steenwerth, K. L., Strong, E. B., Greenhut, R. F., Williams, L., & Kendall, A. (2015). Life cycle greenhouse gas, energy, and water assessment of wine grape production in California. The International Journal of Life Cycle Assessment, 20(9), 1243-1253. doi:10.1007/s11367-015-0935-2 es_ES
dc.description.references Vázquez-Rowe, I., Villanueva-Rey, P., Moreira, M. T., & Feijoo, G. (2012). Environmental analysis of Ribeiro wine from a timeline perspective: Harvest year matters when reporting environmental impacts. Journal of Environmental Management, 98, 73-83. doi:10.1016/j.jenvman.2011.12.009 es_ES
dc.description.references Villanueva-Rey, P., Quinteiro, P., Vázquez-Rowe, I., Rafael, S., Arroja, L., Moreira, M. T., … Dias, A. C. (2018). Assessing water footprint in a wine appellation: A case study for Ribeiro in Galicia, Spain. Journal of Cleaner Production, 172, 2097-2107. doi:10.1016/j.jclepro.2017.11.210 es_ES
dc.description.references Villanueva-Rey, P., Vázquez-Rowe, I., Moreira, M. T., & Feijoo, G. (2014). Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. Journal of Cleaner Production, 65, 330-341. doi:10.1016/j.jclepro.2013.08.026 es_ES
dc.description.references Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218-1230. doi:10.1007/s11367-016-1087-8 es_ES
dc.subject.ods 17.- Fortalecer los medios de ejecución y reavivar la alianza mundial para el desarrollo sostenible es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem