Mostrar el registro sencillo del ítem
dc.contributor.author | Marcos-García, Patricia | es_ES |
dc.contributor.author | Brown, Casey | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.date.accessioned | 2021-07-27T03:37:50Z | |
dc.date.available | 2021-07-27T03:37:50Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0022-1694 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170280 | |
dc.description.abstract | [EN] Climate Impact Response Functions (CIRFs) can be useful for exploring potential risks of system failure under climate change. The performance of a water resource system can be synthesized through a CIRF that relates climate conditions to system behavior in terms of a specified threshold of deliveries to demands or environmental flow requirements. However, in highly regulated water resource systems this relationship may be quite complex, depending on storage capacity and system operation. In this paper we define a CIRF for these types of systems through a multivariable logistic regression (LR) model where a binary variable (system response) is explained by two continuous variables or predictors (precipitation and temperature). The approach involves generating multivariate synthetic inflow time series and relating them to specific climate conditions. Next, these inflows are used as inputs in a water management model, and the outcome is coded as a binary variable (failure or its absence) depending on selected vulnerability criteria. To identify the time span before the failure event in which climate variables are relevant, we characterized drought development stages through relative standardized indices. Mean values of precipitation and temperature for the selected time span are computed and used as explanatory variables through a LR model, which is validated using data from several climate models and scenarios. Results show that the predictive capacity of LR models is acceptable, so that they could be used as screening tools to detect challenging climate conditions for the system which would require adaption actions. | es_ES |
dc.description.sponsorship | This study has been supported by the IMPADAPT project (CGL2013-48424-C2-1-R), funded with Spanish MINECO (Ministerio de Economia y Competitividad) and European FEDER funds, and for the earlier ADAPTAMED project (RTI2018-101483-B-I00), funded by the Ministerio de Ciencia, Innovacion y Universidades (MICINN) of Spain. Patricia Marcos-Garcia has been also supported by a FPI grant from the PhD Training Program (BES-2014-070490) of the former MINECO. The authors thank AEMET (Spanish Meteorological Office) and University of Cantabria for the data provided for this work (dataset Spain02). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Hydrology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Water management | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Climate Impact Response Functions | es_ES |
dc.subject | Synthetic streamflow generation | es_ES |
dc.subject | Multivariable logistic regression | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Development of Climate Impact Response Functions for highly regulated water resource systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jhydrol.2020.125251 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-070490/ES/BES-2014-070490/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Marcos-García, P.; Brown, C.; Pulido-Velazquez, M. (2020). Development of Climate Impact Response Functions for highly regulated water resource systems. Journal of Hydrology. 590:1-14. https://doi.org/10.1016/j.jhydrol.2020.125251 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://10.1016/j.jhydrol.2020.125251 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 590 | es_ES |
dc.relation.pasarela | S\435986 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Borgomeo, E., Farmer, C. L., & Hall, J. W. (2015). Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments. Water Resources Research, 51(7), 5382-5405. doi:10.1002/2014wr016827 | es_ES |
dc.description.references | Brown, C., & Wilby, R. L. (2012). An alternate approach to assessing climate risks. Eos, Transactions American Geophysical Union, 93(41), 401-402. doi:10.1029/2012eo410001 | es_ES |
dc.description.references | Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom‐up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212 | es_ES |
dc.description.references | Chirivella Osma, V., Capilla Romá, J. E., & Pérez Martín, M. A. (2014). Modelling regional impacts of climate change on water resources: the Júcar basin, Spain. Hydrological Sciences Journal, 60(1), 30-49. doi:10.1080/02626667.2013.866711 | es_ES |
dc.description.references | CHJ. 2018. Plan Especial de Sequía. Demarcación Hidrográfica del Júcar. Memoria. (In Spanish). | es_ES |
dc.description.references | CHJ. 2014. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Ciclo de planificación hidrológica 2009-2015 (in Spanish). | es_ES |
dc.description.references | CHJ. 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Ciclo de planificación hidrológica 2015-2021 (in Spanish). | es_ES |
dc.description.references | Dubrovsky, M., Svoboda, M. D., Trnka, M., Hayes, M. J., Wilhite, D. A., Zalud, Z., & Hlavinka, P. (2008). Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, 96(1-2), 155-171. doi:10.1007/s00704-008-0020-x | es_ES |
dc.description.references | Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic Value of Climate Change Adaptation Strategies for Water Management in Spain’s Jucar Basin. Journal of Water Resources Planning and Management, 143(5), 04017005. doi:10.1061/(asce)wr.1943-5452.0000735 | es_ES |
dc.description.references | FRIEDMAN, J. H., & FISHER, N. I. (1999). Statistics and Computing, 9(2), 123-143. doi:10.1023/a:1008894516817 | es_ES |
dc.description.references | Füssel, H.-M., Toth, F. L., van Minnen, J. G., & Kaspar, F. (2003). Climatic Change, 56(1/2), 91-117. doi:10.1023/a:1021340513936 | es_ES |
dc.description.references | GAMS Development Corporation. 2013. General Algebraic Modeling System (GAMS). Release 24.2.1. Washington, DC, USA. | es_ES |
dc.description.references | Girard, C., Pulido-Velazquez, M., Rinaudo, J.-D., Pagé, C., & Caballero, Y. (2015). Integrating top–down and bottom–up approaches to design global change adaptation at the river basin scale. Global Environmental Change, 34, 132-146. doi:10.1016/j.gloenvcha.2015.07.002 | es_ES |
dc.description.references | Groves, D. G., & Lempert, R. J. (2007). A new analytic method for finding policy-relevant scenarios. Global Environmental Change, 17(1), 73-85. doi:10.1016/j.gloenvcha.2006.11.006 | es_ES |
dc.description.references | Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113(D20). doi:10.1029/2008jd010201 | es_ES |
dc.description.references | Hosmer, D. W., & Lemesbow, S. (1980). Goodness of fit tests for the multiple logistic regression model. Communications in Statistics - Theory and Methods, 9(10), 1043-1069. doi:10.1080/03610928008827941 | es_ES |
dc.description.references | Kim, D., Chun, J. A., & Choi, S. J. (2019). Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system. Hydrology and Earth System Sciences, 23(2), 1145-1162. doi:10.5194/hess-23-1145-2019 | es_ES |
dc.description.references | KOUTSOYIANNIS, D., EFSTRATIADIS, A., MAMASSIS, N., & CHRISTOFIDES, A. (2008). On the credibility of climate predictions. Hydrological Sciences Journal, 53(4), 671-684. doi:10.1623/hysj.53.4.671 | es_ES |
dc.description.references | Kwakkel, J. H., & Jaxa-Rozen, M. (2016). Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes. Environmental Modelling & Software, 79, 311-321. doi:10.1016/j.envsoft.2015.11.020 | es_ES |
dc.description.references | Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios. Management Science, 52(4), 514-528. doi:10.1287/mnsc.1050.0472 | es_ES |
dc.description.references | López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo-Lacruz, J., Kenawy, A., & Beniston, M. (2011). Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global and Planetary Change, 77(1-2), 62-76. doi:10.1016/j.gloplacha.2011.03.003 | es_ES |
dc.description.references | Macian‐Sorribes, H., Tilmant, A., & Pulido‐Velazquez, M. (2017). Improving operating policies of large‐scale surface‐groundwater systems through stochastic programming. Water Resources Research, 53(2), 1407-1423. doi:10.1002/2016wr019573 | es_ES |
dc.description.references | Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028 | es_ES |
dc.description.references | Marcos-Garcia, P., & Pulido-Velazquez, M. (2017). Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación? Ingeniería del agua, 21(1), 35. doi:10.4995/ia.2017.6361 | es_ES |
dc.description.references | MARM, 2008. Orden ARM/2656/2008, de 10 de septiembre, por la que se aprueba la Instrucción de Planificación Hidrológica. BOE n°. 229, 22 September 2008, 38472-38582 (in Spanish). | es_ES |
dc.description.references | McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration of time scales. In: Eighth Conference on Applied Climatology, American Meteorological Society, Jan 17–23, 1993, Anaheim CA, pp. 179–186. | es_ES |
dc.description.references | MMA. 2001. Real Decreto Legislativo 1/2001, de 20 de julio, por el que se aprueba el Texto Refundido de la Ley de Aguas. BOE n°. 176, 24 July 2001 (in Spanish). | es_ES |
dc.description.references | Muñoz-Díaz, D., & Rodrigo, F. S. (2003). Effects of the North Atlantic oscillation on the probability for climatic categories of local monthly rainfall in southern Spain. International Journal of Climatology, 23(4), 381-397. doi:10.1002/joc.886 | es_ES |
dc.description.references | NAGELKERKE, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692. doi:10.1093/biomet/78.3.691 | es_ES |
dc.description.references | Nattino, G., Finazzi, S., Rossi, C., Carrara, G., Bertolini, G. 2017. givitiR package: assessing the calibration of binary outcome models with the GiViTI calibration belt. Available online: <https://cran.r-project.org/web/packages/givitiR/vignettes/givitiR.html> (Last access: July 2018). | es_ES |
dc.description.references | Nattino, G., Finazzi, S., & Bertolini, G. (2015). A new test and graphical tool to assess the goodness of fit of logistic regression models. Statistics in Medicine, 35(5), 709-720. doi:10.1002/sim.6744 | es_ES |
dc.description.references | Queralt, S., Hernández, E., Barriopedro, D., Gallego, D., Ribera, P., & Casanova, C. (2009). North Atlantic Oscillation influence and weather types associated with winter total and extreme precipitation events in Spain. Atmospheric Research, 94(4), 675-683. doi:10.1016/j.atmosres.2009.09.005 | es_ES |
dc.description.references | Soundharajan, B.-S., Adeloye, A. J., & Remesan, R. (2016). Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment. Journal of Hydrology, 538, 625-639. doi:10.1016/j.jhydrol.2016.04.051 | es_ES |
dc.description.references | Stainforth, D. A., Downing, T. E., Washington, R., Lopez, A., & New, M. (2007). Issues in the interpretation of climate model ensembles to inform decisions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2163-2177. doi:10.1098/rsta.2007.2073 | es_ES |
dc.description.references | Steinschneider, S., McCrary, R., Wi, S., Mulligan, K., Mearns, L. O., & Brown, C. (2015). Expanded Decision-Scaling Framework to Select Robust Long-Term Water-System Plans under Hydroclimatic Uncertainties. Journal of Water Resources Planning and Management, 141(11), 04015023. doi:10.1061/(asce)wr.1943-5452.0000536 | es_ES |
dc.description.references | Témez Peláez, J.R., 1977. Modelo matemático de transformación precipitación-aportación. ASINEL, 1977. (in Spanish). | es_ES |
dc.description.references | Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739 | es_ES |
dc.description.references | Tjur, T. (2009). Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination. The American Statistician, 63(4), 366-372. doi:10.1198/tast.2009.08210 | es_ES |
dc.description.references | Toth, F. L., Cramer, W., & Hizsnyik, E. (2000). Climatic Change, 46(3), 225-246. doi:10.1023/a:1005668420713 | es_ES |
dc.description.references | Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., & Esteban-Parra, M. J. (2004). North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8), 925-944. doi:10.1002/joc.1048 | es_ES |
dc.description.references | Vicente‐Serrano, S. M., Beguería, S., López‐Moreno, J. I., El Kenawy, A. M., & Angulo‐Martínez, M. (2009). Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: Role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. Journal of Geophysical Research, 114(D8). doi:10.1029/2008jd011492 | es_ES |
dc.description.references | Vicente-Serrano, S. M., & Cuadrat, J. M. (2007). North Atlantic oscillation control of droughts in north-east Spain: evaluation since 1600 a.d. Climatic Change, 85(3-4), 357-379. doi:10.1007/s10584-007-9285-9 | es_ES |
dc.description.references | Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696-1718. doi:10.1175/2009jcli2909.1 | es_ES |
dc.description.references | Villalobos, A. 2007. Análisis y seguimiento de diferentes tipos de sequía en la cuenca del río Júcar. PhD dissertation. Universitat Politècnica de València. Valencia, Spain. (In Spanish). | es_ES |
dc.description.references | Wilby, R. L., & Dessai, S. (2010). Robust adaptation to climate change. Weather, 65(7), 180-185. doi:10.1002/wea.543 | es_ES |