- -

Development of Climate Impact Response Functions for highly regulated water resource systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of Climate Impact Response Functions for highly regulated water resource systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Marcos-García, Patricia es_ES
dc.contributor.author Brown, Casey es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2021-07-27T03:37:50Z
dc.date.available 2021-07-27T03:37:50Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0022-1694 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170280
dc.description.abstract [EN] Climate Impact Response Functions (CIRFs) can be useful for exploring potential risks of system failure under climate change. The performance of a water resource system can be synthesized through a CIRF that relates climate conditions to system behavior in terms of a specified threshold of deliveries to demands or environmental flow requirements. However, in highly regulated water resource systems this relationship may be quite complex, depending on storage capacity and system operation. In this paper we define a CIRF for these types of systems through a multivariable logistic regression (LR) model where a binary variable (system response) is explained by two continuous variables or predictors (precipitation and temperature). The approach involves generating multivariate synthetic inflow time series and relating them to specific climate conditions. Next, these inflows are used as inputs in a water management model, and the outcome is coded as a binary variable (failure or its absence) depending on selected vulnerability criteria. To identify the time span before the failure event in which climate variables are relevant, we characterized drought development stages through relative standardized indices. Mean values of precipitation and temperature for the selected time span are computed and used as explanatory variables through a LR model, which is validated using data from several climate models and scenarios. Results show that the predictive capacity of LR models is acceptable, so that they could be used as screening tools to detect challenging climate conditions for the system which would require adaption actions. es_ES
dc.description.sponsorship This study has been supported by the IMPADAPT project (CGL2013-48424-C2-1-R), funded with Spanish MINECO (Ministerio de Economia y Competitividad) and European FEDER funds, and for the earlier ADAPTAMED project (RTI2018-101483-B-I00), funded by the Ministerio de Ciencia, Innovacion y Universidades (MICINN) of Spain. Patricia Marcos-Garcia has been also supported by a FPI grant from the PhD Training Program (BES-2014-070490) of the former MINECO. The authors thank AEMET (Spanish Meteorological Office) and University of Cantabria for the data provided for this work (dataset Spain02). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Water management es_ES
dc.subject Climate change es_ES
dc.subject Climate Impact Response Functions es_ES
dc.subject Synthetic streamflow generation es_ES
dc.subject Multivariable logistic regression es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Development of Climate Impact Response Functions for highly regulated water resource systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2020.125251 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-070490/ES/BES-2014-070490/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Marcos-García, P.; Brown, C.; Pulido-Velazquez, M. (2020). Development of Climate Impact Response Functions for highly regulated water resource systems. Journal of Hydrology. 590:1-14. https://doi.org/10.1016/j.jhydrol.2020.125251 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://10.1016/j.jhydrol.2020.125251 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 590 es_ES
dc.relation.pasarela S\435986 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Borgomeo, E., Farmer, C. L., & Hall, J. W. (2015). Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments. Water Resources Research, 51(7), 5382-5405. doi:10.1002/2014wr016827 es_ES
dc.description.references Brown, C., & Wilby, R. L. (2012). An alternate approach to assessing climate risks. Eos, Transactions American Geophysical Union, 93(41), 401-402. doi:10.1029/2012eo410001 es_ES
dc.description.references Brown, C., Ghile, Y., Laverty, M., & Li, K. (2012). Decision scaling: Linking bottom‐up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48(9). doi:10.1029/2011wr011212 es_ES
dc.description.references Chirivella Osma, V., Capilla Romá, J. E., & Pérez Martín, M. A. (2014). Modelling regional impacts of climate change on water resources: the Júcar basin, Spain. Hydrological Sciences Journal, 60(1), 30-49. doi:10.1080/02626667.2013.866711 es_ES
dc.description.references CHJ. 2018. Plan Especial de Sequía. Demarcación Hidrográfica del Júcar. Memoria. (In Spanish). es_ES
dc.description.references CHJ. 2014. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Ciclo de planificación hidrológica 2009-2015 (in Spanish). es_ES
dc.description.references CHJ. 2015. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Ciclo de planificación hidrológica 2015-2021 (in Spanish). es_ES
dc.description.references Dubrovsky, M., Svoboda, M. D., Trnka, M., Hayes, M. J., Wilhite, D. A., Zalud, Z., & Hlavinka, P. (2008). Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, 96(1-2), 155-171. doi:10.1007/s00704-008-0020-x es_ES
dc.description.references Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic Value of Climate Change Adaptation Strategies for Water Management in Spain’s Jucar Basin. Journal of Water Resources Planning and Management, 143(5), 04017005. doi:10.1061/(asce)wr.1943-5452.0000735 es_ES
dc.description.references FRIEDMAN, J. H., & FISHER, N. I. (1999). Statistics and Computing, 9(2), 123-143. doi:10.1023/a:1008894516817 es_ES
dc.description.references Füssel, H.-M., Toth, F. L., van Minnen, J. G., & Kaspar, F. (2003). Climatic Change, 56(1/2), 91-117. doi:10.1023/a:1021340513936 es_ES
dc.description.references GAMS Development Corporation. 2013. General Algebraic Modeling System (GAMS). Release 24.2.1. Washington, DC, USA. es_ES
dc.description.references Girard, C., Pulido-Velazquez, M., Rinaudo, J.-D., Pagé, C., & Caballero, Y. (2015). Integrating top–down and bottom–up approaches to design global change adaptation at the river basin scale. Global Environmental Change, 34, 132-146. doi:10.1016/j.gloenvcha.2015.07.002 es_ES
dc.description.references Groves, D. G., & Lempert, R. J. (2007). A new analytic method for finding policy-relevant scenarios. Global Environmental Change, 17(1), 73-85. doi:10.1016/j.gloenvcha.2006.11.006 es_ES
dc.description.references Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113(D20). doi:10.1029/2008jd010201 es_ES
dc.description.references Hosmer, D. W., & Lemesbow, S. (1980). Goodness of fit tests for the multiple logistic regression model. Communications in Statistics - Theory and Methods, 9(10), 1043-1069. doi:10.1080/03610928008827941 es_ES
dc.description.references Kim, D., Chun, J. A., & Choi, S. J. (2019). Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system. Hydrology and Earth System Sciences, 23(2), 1145-1162. doi:10.5194/hess-23-1145-2019 es_ES
dc.description.references KOUTSOYIANNIS, D., EFSTRATIADIS, A., MAMASSIS, N., & CHRISTOFIDES, A. (2008). On the credibility of climate predictions. Hydrological Sciences Journal, 53(4), 671-684. doi:10.1623/hysj.53.4.671 es_ES
dc.description.references Kwakkel, J. H., & Jaxa-Rozen, M. (2016). Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes. Environmental Modelling & Software, 79, 311-321. doi:10.1016/j.envsoft.2015.11.020 es_ES
dc.description.references Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios. Management Science, 52(4), 514-528. doi:10.1287/mnsc.1050.0472 es_ES
dc.description.references López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo-Lacruz, J., Kenawy, A., & Beniston, M. (2011). Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global and Planetary Change, 77(1-2), 62-76. doi:10.1016/j.gloplacha.2011.03.003 es_ES
dc.description.references Macian‐Sorribes, H., Tilmant, A., & Pulido‐Velazquez, M. (2017). Improving operating policies of large‐scale surface‐groundwater systems through stochastic programming. Water Resources Research, 53(2), 1407-1423. doi:10.1002/2016wr019573 es_ES
dc.description.references Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028 es_ES
dc.description.references Marcos-Garcia, P., & Pulido-Velazquez, M. (2017). Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para toda la demarcación? Ingeniería del agua, 21(1), 35. doi:10.4995/ia.2017.6361 es_ES
dc.description.references MARM, 2008. Orden ARM/2656/2008, de 10 de septiembre, por la que se aprueba la Instrucción de Planificación Hidrológica. BOE n°. 229, 22 September 2008, 38472-38582 (in Spanish). es_ES
dc.description.references McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration of time scales. In: Eighth Conference on Applied Climatology, American Meteorological Society, Jan 17–23, 1993, Anaheim CA, pp. 179–186. es_ES
dc.description.references MMA. 2001. Real Decreto Legislativo 1/2001, de 20 de julio, por el que se aprueba el Texto Refundido de la Ley de Aguas. BOE n°. 176, 24 July 2001 (in Spanish). es_ES
dc.description.references Muñoz-Díaz, D., & Rodrigo, F. S. (2003). Effects of the North Atlantic oscillation on the probability for climatic categories of local monthly rainfall in southern Spain. International Journal of Climatology, 23(4), 381-397. doi:10.1002/joc.886 es_ES
dc.description.references NAGELKERKE, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692. doi:10.1093/biomet/78.3.691 es_ES
dc.description.references Nattino, G., Finazzi, S., Rossi, C., Carrara, G., Bertolini, G. 2017. givitiR package: assessing the calibration of binary outcome models with the GiViTI calibration belt. Available online: <https://cran.r-project.org/web/packages/givitiR/vignettes/givitiR.html> (Last access: July 2018). es_ES
dc.description.references Nattino, G., Finazzi, S., & Bertolini, G. (2015). A new test and graphical tool to assess the goodness of fit of logistic regression models. Statistics in Medicine, 35(5), 709-720. doi:10.1002/sim.6744 es_ES
dc.description.references Queralt, S., Hernández, E., Barriopedro, D., Gallego, D., Ribera, P., & Casanova, C. (2009). North Atlantic Oscillation influence and weather types associated with winter total and extreme precipitation events in Spain. Atmospheric Research, 94(4), 675-683. doi:10.1016/j.atmosres.2009.09.005 es_ES
dc.description.references Soundharajan, B.-S., Adeloye, A. J., & Remesan, R. (2016). Evaluating the variability in surface water reservoir planning characteristics during climate change impacts assessment. Journal of Hydrology, 538, 625-639. doi:10.1016/j.jhydrol.2016.04.051 es_ES
dc.description.references Stainforth, D. A., Downing, T. E., Washington, R., Lopez, A., & New, M. (2007). Issues in the interpretation of climate model ensembles to inform decisions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2163-2177. doi:10.1098/rsta.2007.2073 es_ES
dc.description.references Steinschneider, S., McCrary, R., Wi, S., Mulligan, K., Mearns, L. O., & Brown, C. (2015). Expanded Decision-Scaling Framework to Select Robust Long-Term Water-System Plans under Hydroclimatic Uncertainties. Journal of Water Resources Planning and Management, 141(11), 04015023. doi:10.1061/(asce)wr.1943-5452.0000536 es_ES
dc.description.references Témez Peláez, J.R., 1977. Modelo matemático de transformación precipitación-aportación. ASINEL, 1977. (in Spanish). es_ES
dc.description.references Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739 es_ES
dc.description.references Tjur, T. (2009). Coefficients of Determination in Logistic Regression Models—A New Proposal: The Coefficient of Discrimination. The American Statistician, 63(4), 366-372. doi:10.1198/tast.2009.08210 es_ES
dc.description.references Toth, F. L., Cramer, W., & Hizsnyik, E. (2000). Climatic Change, 46(3), 225-246. doi:10.1023/a:1005668420713 es_ES
dc.description.references Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., & Esteban-Parra, M. J. (2004). North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology, 24(8), 925-944. doi:10.1002/joc.1048 es_ES
dc.description.references Vicente‐Serrano, S. M., Beguería, S., López‐Moreno, J. I., El Kenawy, A. M., & Angulo‐Martínez, M. (2009). Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: Role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. Journal of Geophysical Research, 114(D8). doi:10.1029/2008jd011492 es_ES
dc.description.references Vicente-Serrano, S. M., & Cuadrat, J. M. (2007). North Atlantic oscillation control of droughts in north-east Spain: evaluation since 1600 a.d. Climatic Change, 85(3-4), 357-379. doi:10.1007/s10584-007-9285-9 es_ES
dc.description.references Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696-1718. doi:10.1175/2009jcli2909.1 es_ES
dc.description.references Villalobos, A. 2007. Análisis y seguimiento de diferentes tipos de sequía en la cuenca del río Júcar. PhD dissertation. Universitat Politècnica de València. Valencia, Spain. (In Spanish). es_ES
dc.description.references Wilby, R. L., & Dessai, S. (2010). Robust adaptation to climate change. Weather, 65(7), 180-185. doi:10.1002/wea.543 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem