- -

Modal noise mitigation for high-precision spectroscopy using a photonic reformatter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modal noise mitigation for high-precision spectroscopy using a photonic reformatter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pike, F. A. es_ES
dc.contributor.author Benoît, A. es_ES
dc.contributor.author MacLachlan, D. G. es_ES
dc.contributor.author Harris, R. J. es_ES
dc.contributor.author Gris-Sánchez, Itandehui es_ES
dc.contributor.author Lee, D. es_ES
dc.contributor.author Birks, T. A. es_ES
dc.contributor.author Thomson, R. R. es_ES
dc.date.accessioned 2021-07-30T03:31:14Z
dc.date.available 2021-07-30T03:31:14Z
dc.date.issued 2020-07-07 es_ES
dc.identifier.issn 0035-8711 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170962
dc.description.abstract [EN] Recently, we demonstrated how an astrophotonic light reformatting device, based on a multicore fibre photonic lantern and a 3D waveguide component, can be used to efficiently reformat the point spread function of a telescope to a diffraction-limited pseudo-slit. Here, we demonstrate how such a device can also efficiently mitigate modal noise - a potential source of instability in high-resolution multimode fibre-fed spectrographs. To investigate the modal noise performance of the photonic reformatter, we have used it to feed light into a bench-top near-infrared spectrograph (R approximate to 7000, lambda approximate to 1550 nm). One approach to quantifying the modal noise involved the use of broad-band excitation light and a statistical analysis of how the overall measured spectrum was affected by variations in the input coupling conditions. This approach indicated that the photonic reformatter could reduce modal noise by a factor of 6 when compared to a multimode fibre with a similar number of guided modes. Another approach to quantifying themodal noise involved the use of multiple spectrally narrow lines, and an analysis of how the measured barycentres of these lines were affected by variations in the input coupling. Using this approach, the photonic reformatter was observed to suppress modal noise to the level necessary to obtain spectra with stability close to that observed when using a single mode fibre feed. These results demonstrate the potential of using photonic reformatters to enable efficient multimode spectrographs that operate at the diffraction-limit and are free of modal noise, with potential applications including radial velocity measurements of M-dwarfs. es_ES
dc.description.sponsorship This work was funded by the UK Science and Technology Facilities Council (STFC) -STFC grant no. ST/N000625/1, and by the European Union's Horizon 2020 research and innovation program under grant no. 730890 (OPTICON -Optical Infrared Coordination Network for Astronomy). FAP acknowledges support via an Engineering and Physical Sciences Research Council (EPSRC) iCASE studentship part funded by Renishaw. We acknowledge use of RSoft's Photonic Design Suite, Version Synopsys RSoft 2020.03 https://www.synopsys.com/photonic-solutions.html. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Monthly Notices of the Royal Astronomical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Instrumentation: Spectrograph es_ES
dc.subject Techniques: Radial velocities es_ES
dc.subject Planets and satellites es_ES
dc.subject Detection es_ES
dc.title Modal noise mitigation for high-precision spectroscopy using a photonic reformatter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/mnras/staa1950 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/730890/EU/Optical Infrared Coordination Network for Astronomy/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//ST%2FN000625%2F1/GB/Precision Astronomical Spectrographs using Single-Mode Photonic Technologies/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Pike, FA.; Benoît, A.; Maclachlan, DG.; Harris, RJ.; Gris-Sánchez, I.; Lee, D.; Birks, TA.... (2020). Modal noise mitigation for high-precision spectroscopy using a photonic reformatter. Monthly Notices of the Royal Astronomical Society. 497(3):3713-3725. https://doi.org/10.1093/mnras/staa1950 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/mnras/staa1950 es_ES
dc.description.upvformatpinicio 3713 es_ES
dc.description.upvformatpfin 3725 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 497 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\433574 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Science and Technology Facilities Council, Reino Unido es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Anagnos, T., Harris, R. J., Corrigan, M. K., Reeves, A. P., Townson, M. J., MacLachlan, D. G., … Quirrenbach, A. (2018). Simulation and optimisation of an astrophotonic reformatter. Monthly Notices of the Royal Astronomical Society, 478(4), 4881-4889. doi:10.1093/mnras/sty1396 es_ES
dc.description.references Angel, J. R. P., Adams, M. T., Boroson, T. A., & Moore, R. L. (1977). A very large optical telescope array linked with fused silica fibers. The Astrophysical Journal, 218, 776. doi:10.1086/155734 es_ES
dc.description.references Anglada-Escudé, G., Amado, P. J., Barnes, J., Berdiñas, Z. M., Butler, R. P., Coleman, G. A. L., … Zechmeister, M. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536(7617), 437-440. doi:10.1038/nature19106 es_ES
dc.description.references Baudrand, J., & Walker, G. A. H. (2001). Modal Noise in High‐Resolution, Fiber‐fed Spectra: A Study and Simple Cure. Publications of the Astronomical Society of the Pacific, 113(785), 851-858. doi:10.1086/322143 es_ES
dc.description.references Betters, C. H., Bland-Hawthorn, J., Sukkarieh, S., Gris-Sanchez, I., & Leon-Saval, S. G. (2020). A Multi-Core Fibre Photonic Lantern-Based Spectrograph for Raman Spectroscopy. IEEE Photonics Technology Letters, 32(7), 395-398. doi:10.1109/lpt.2020.2976599 es_ES
dc.description.references Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G., & Thomson, R. R. (2015). The photonic lantern. Advances in Optics and Photonics, 7(2), 107. doi:10.1364/aop.7.000107 es_ES
dc.description.references Borucki, W. J., & Summers, A. L. (1984). The photometric method of detecting other planetary systems. Icarus, 58(1), 121-134. doi:10.1016/0019-1035(84)90102-7 es_ES
dc.description.references Catanzarite, J., & Shao, M. (2011). THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS. The Astrophysical Journal, 738(2), 151. doi:10.1088/0004-637x/738/2/151 es_ES
dc.description.references Chandrasekharan, H. K., Ehrlich, K., Tanner, M. G., Haynes, D. M., Mukherjee, S., Birks, T. A., & Thomson, R. R. (2020). Observing mode-dependent wavelength-to-time mapping in few-mode fibers using a single-photon detector array. APL Photonics, 5(6), 061303. doi:10.1063/5.0006983 es_ES
dc.description.references Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. (2000). Detection of Planetary Transits Across a Sun-like Star. The Astrophysical Journal, 529(1), L45-L48. doi:10.1086/312457 es_ES
dc.description.references Claudi, R., Benatti, S., Carleo, I., Ghedina, A., Guerra, J., Micela, G., … Riverol, C. (2017). GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy. The European Physical Journal Plus, 132(8). doi:10.1140/epjp/i2017-11647-9 es_ES
dc.description.references Cvetojevic, N., Jovanovic, N., Gross, S., Norris, B., Spaleniak, I., Schwab, C., … Lawrence, J. S. (2017). Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph. Optics Express, 25(21), 25546. doi:10.1364/oe.25.025546 es_ES
dc.description.references Dressing, C. D., & Charbonneau, D. (2013). THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS. The Astrophysical Journal, 767(1), 95. doi:10.1088/0004-637x/767/1/95 es_ES
dc.description.references Fischer, D. A., Anglada-Escude, G., Arriagada, P., Baluev, R. V., Bean, J. L., Bouchy, F., … Crepp, J. R. (2016). State of the Field: Extreme Precision Radial Velocities. Publications of the Astronomical Society of the Pacific, 128(964), 066001. doi:10.1088/1538-3873/128/964/066001 es_ES
dc.description.references Gillon, M., Triaud, A. H. M. J., Demory, B.-O., Jehin, E., Agol, E., Deck, K. M., … Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7642), 456-460. doi:10.1038/nature21360 es_ES
dc.description.references Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., Lister, T. A., Smalley, B., Maxted, P. F. L., … Wheatley, P. J. (2009). WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED. The Astrophysical Journal, 708(1), 224-231. doi:10.1088/0004-637x/708/1/224 es_ES
dc.description.references Hill, K. O., Tremblay, Y., & Kawasaki, B. S. (1980). Modal noise in multimode fiber links: theory and experiment. Optics Letters, 5(6), 270. doi:10.1364/ol.5.000270 es_ES
dc.description.references Iuzzolino, M., Tozzi, A., Sanna, N., Zangrilli, L., & Oliva, E. (2014). Preliminary results on the characterization and performances of ZBLAN fiber for infrared spectrographs. Ground-based and Airborne Instrumentation for Astronomy V. doi:10.1117/12.2055093 es_ES
dc.description.references Koch, D. G., Borucki, W. J., Basri, G., Batalha, N. M., Brown, T. M., Caldwell, D., … Wu, H. (2010). KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE. The Astrophysical Journal, 713(2), L79-L86. doi:10.1088/2041-8205/713/2/l79 es_ES
dc.description.references Leon-Saval, S. G., Birks, T. A., Bland-Hawthorn, J., & Englund, M. (2005). Multimode fiber devices with single-mode performance. Optics Letters, 30(19), 2545. doi:10.1364/ol.30.002545 es_ES
dc.description.references Leon-Saval, S. G., Betters, C. H., & Bland-Hawthorn, J. (2012). The Photonic TIGER: a multicore fiber-fed spectrograph. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II. doi:10.1117/12.925254 es_ES
dc.description.references MacLachlan, D. G., Harris, R. J., Gris-Sánchez, I., Morris, T. J., Choudhury, D., Gendron, E., … Thomson, R. R. (2016). Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy. Monthly Notices of the Royal Astronomical Society, 464(4), 4950-4957. doi:10.1093/mnras/stw2558 es_ES
dc.description.references Mahadevan, S., Halverson, S., Ramsey, L., & Venditti, N. (2014). SUPPRESSION OF FIBER MODAL NOISE INDUCED RADIAL VELOCITY ERRORS FOR BRIGHT EMISSION-LINE CALIBRATION SOURCES. The Astrophysical Journal, 786(1), 18. doi:10.1088/0004-637x/786/1/18 es_ES
dc.description.references Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378(6555), 355-359. doi:10.1038/378355a0 es_ES
dc.description.references Mulders, G. D., Pascucci, I., & Apai, D. (2015). A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES. The Astrophysical Journal, 798(2), 112. doi:10.1088/0004-637x/798/2/112 es_ES
dc.description.references Oliva, E., Origlia, L., Scuderi, S., Benatti, S., Carleo, I., Lapenna, E., … Pedani, M. (2015). Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG. Astronomy & Astrophysics, 581, A47. doi:10.1051/0004-6361/201526291 es_ES
dc.description.references Petersburg, R. R., McCracken, T. M., Eggerman, D., Jurgenson, C. A., Sawyer, D., Szymkowiak, A. E., & Fischer, D. A. (2018). Modal Noise Mitigation through Fiber Agitation for Fiber-fed Radial Velocity Spectrographs. The Astrophysical Journal, 853(2), 181. doi:10.3847/1538-4357/aaa487 es_ES
dc.description.references Rawson, E. G., Goodman, J. W., & Norton, R. E. (1980). Frequency dependence of modal noise in multimode optical fibers. Journal of the Optical Society of America, 70(8), 968. doi:10.1364/josa.70.000968 es_ES
dc.description.references Reiners, A., Bean, J. L., Huber, K. F., Dreizler, S., Seifahrt, A., & Czesla, S. (2010). DETECTING PLANETS AROUND VERY LOW MASS STARS WITH THE RADIAL VELOCITY METHOD. The Astrophysical Journal, 710(1), 432-443. doi:10.1088/0004-637x/710/1/432 es_ES
dc.description.references Schwab, C., Leon-Saval, S. G., Betters, C. H., Bland-Hawthorn, J., & Mahadevan, S. (2012). Single Mode, Extreme Precision Doppler Spectrographs. Proceedings of the International Astronomical Union, 8(S293), 403-406. doi:10.1017/s1743921313013264 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem