- -

Modal noise mitigation for high-precision spectroscopy using a photonic reformatter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modal noise mitigation for high-precision spectroscopy using a photonic reformatter

Mostrar el registro completo del ítem

Pike, FA.; Benoît, A.; Maclachlan, DG.; Harris, RJ.; Gris-Sánchez, I.; Lee, D.; Birks, TA.... (2020). Modal noise mitigation for high-precision spectroscopy using a photonic reformatter. Monthly Notices of the Royal Astronomical Society. 497(3):3713-3725. https://doi.org/10.1093/mnras/staa1950

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170962

Ficheros en el ítem

Metadatos del ítem

Título: Modal noise mitigation for high-precision spectroscopy using a photonic reformatter
Autor: Pike, F. A. Benoît, A. MacLachlan, D. G. Harris, R. J. Gris-Sánchez, Itandehui Lee, D. Birks, T. A. Thomson, R. R.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Recently, we demonstrated how an astrophotonic light reformatting device, based on a multicore fibre photonic lantern and a 3D waveguide component, can be used to efficiently reformat the point spread function of a ...[+]
Palabras clave: Instrumentation: Spectrograph , Techniques: Radial velocities , Planets and satellites , Detection
Derechos de uso: Reserva de todos los derechos
Fuente:
Monthly Notices of the Royal Astronomical Society. (issn: 0035-8711 )
DOI: 10.1093/mnras/staa1950
Editorial:
Oxford University Press
Versión del editor: https://doi.org/10.1093/mnras/staa1950
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/730890/EU/Optical Infrared Coordination Network for Astronomy/
info:eu-repo/grantAgreement/UKRI//ST%2FN000625%2F1/GB/Precision Astronomical Spectrographs using Single-Mode Photonic Technologies/
Agradecimientos:
This work was funded by the UK Science and Technology Facilities Council (STFC) -STFC grant no. ST/N000625/1, and by the European Union's Horizon 2020 research and innovation program under grant no. 730890 (OPTICON -Optical ...[+]
Tipo: Artículo

References

Anagnos, T., Harris, R. J., Corrigan, M. K., Reeves, A. P., Townson, M. J., MacLachlan, D. G., … Quirrenbach, A. (2018). Simulation and optimisation of an astrophotonic reformatter. Monthly Notices of the Royal Astronomical Society, 478(4), 4881-4889. doi:10.1093/mnras/sty1396

Angel, J. R. P., Adams, M. T., Boroson, T. A., & Moore, R. L. (1977). A very large optical telescope array linked with fused silica fibers. The Astrophysical Journal, 218, 776. doi:10.1086/155734

Anglada-Escudé, G., Amado, P. J., Barnes, J., Berdiñas, Z. M., Butler, R. P., Coleman, G. A. L., … Zechmeister, M. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536(7617), 437-440. doi:10.1038/nature19106 [+]
Anagnos, T., Harris, R. J., Corrigan, M. K., Reeves, A. P., Townson, M. J., MacLachlan, D. G., … Quirrenbach, A. (2018). Simulation and optimisation of an astrophotonic reformatter. Monthly Notices of the Royal Astronomical Society, 478(4), 4881-4889. doi:10.1093/mnras/sty1396

Angel, J. R. P., Adams, M. T., Boroson, T. A., & Moore, R. L. (1977). A very large optical telescope array linked with fused silica fibers. The Astrophysical Journal, 218, 776. doi:10.1086/155734

Anglada-Escudé, G., Amado, P. J., Barnes, J., Berdiñas, Z. M., Butler, R. P., Coleman, G. A. L., … Zechmeister, M. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536(7617), 437-440. doi:10.1038/nature19106

Baudrand, J., & Walker, G. A. H. (2001). Modal Noise in High‐Resolution, Fiber‐fed Spectra: A Study and Simple Cure. Publications of the Astronomical Society of the Pacific, 113(785), 851-858. doi:10.1086/322143

Betters, C. H., Bland-Hawthorn, J., Sukkarieh, S., Gris-Sanchez, I., & Leon-Saval, S. G. (2020). A Multi-Core Fibre Photonic Lantern-Based Spectrograph for Raman Spectroscopy. IEEE Photonics Technology Letters, 32(7), 395-398. doi:10.1109/lpt.2020.2976599

Birks, T. A., Gris-Sánchez, I., Yerolatsitis, S., Leon-Saval, S. G., & Thomson, R. R. (2015). The photonic lantern. Advances in Optics and Photonics, 7(2), 107. doi:10.1364/aop.7.000107

Borucki, W. J., & Summers, A. L. (1984). The photometric method of detecting other planetary systems. Icarus, 58(1), 121-134. doi:10.1016/0019-1035(84)90102-7

Catanzarite, J., & Shao, M. (2011). THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS. The Astrophysical Journal, 738(2), 151. doi:10.1088/0004-637x/738/2/151

Chandrasekharan, H. K., Ehrlich, K., Tanner, M. G., Haynes, D. M., Mukherjee, S., Birks, T. A., & Thomson, R. R. (2020). Observing mode-dependent wavelength-to-time mapping in few-mode fibers using a single-photon detector array. APL Photonics, 5(6), 061303. doi:10.1063/5.0006983

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. (2000). Detection of Planetary Transits Across a Sun-like Star. The Astrophysical Journal, 529(1), L45-L48. doi:10.1086/312457

Claudi, R., Benatti, S., Carleo, I., Ghedina, A., Guerra, J., Micela, G., … Riverol, C. (2017). GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy. The European Physical Journal Plus, 132(8). doi:10.1140/epjp/i2017-11647-9

Cvetojevic, N., Jovanovic, N., Gross, S., Norris, B., Spaleniak, I., Schwab, C., … Lawrence, J. S. (2017). Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph. Optics Express, 25(21), 25546. doi:10.1364/oe.25.025546

Dressing, C. D., & Charbonneau, D. (2013). THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS. The Astrophysical Journal, 767(1), 95. doi:10.1088/0004-637x/767/1/95

Fischer, D. A., Anglada-Escude, G., Arriagada, P., Baluev, R. V., Bean, J. L., Bouchy, F., … Crepp, J. R. (2016). State of the Field: Extreme Precision Radial Velocities. Publications of the Astronomical Society of the Pacific, 128(964), 066001. doi:10.1088/1538-3873/128/964/066001

Gillon, M., Triaud, A. H. M. J., Demory, B.-O., Jehin, E., Agol, E., Deck, K. M., … Queloz, D. (2017). Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature, 542(7642), 456-460. doi:10.1038/nature21360

Hebb, L., Collier-Cameron, A., Triaud, A. H. M. J., Lister, T. A., Smalley, B., Maxted, P. F. L., … Wheatley, P. J. (2009). WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED. The Astrophysical Journal, 708(1), 224-231. doi:10.1088/0004-637x/708/1/224

Hill, K. O., Tremblay, Y., & Kawasaki, B. S. (1980). Modal noise in multimode fiber links: theory and experiment. Optics Letters, 5(6), 270. doi:10.1364/ol.5.000270

Iuzzolino, M., Tozzi, A., Sanna, N., Zangrilli, L., & Oliva, E. (2014). Preliminary results on the characterization and performances of ZBLAN fiber for infrared spectrographs. Ground-based and Airborne Instrumentation for Astronomy V. doi:10.1117/12.2055093

Koch, D. G., Borucki, W. J., Basri, G., Batalha, N. M., Brown, T. M., Caldwell, D., … Wu, H. (2010). KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE. The Astrophysical Journal, 713(2), L79-L86. doi:10.1088/2041-8205/713/2/l79

Leon-Saval, S. G., Birks, T. A., Bland-Hawthorn, J., & Englund, M. (2005). Multimode fiber devices with single-mode performance. Optics Letters, 30(19), 2545. doi:10.1364/ol.30.002545

Leon-Saval, S. G., Betters, C. H., & Bland-Hawthorn, J. (2012). The Photonic TIGER: a multicore fiber-fed spectrograph. Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II. doi:10.1117/12.925254

MacLachlan, D. G., Harris, R. J., Gris-Sánchez, I., Morris, T. J., Choudhury, D., Gendron, E., … Thomson, R. R. (2016). Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy. Monthly Notices of the Royal Astronomical Society, 464(4), 4950-4957. doi:10.1093/mnras/stw2558

Mahadevan, S., Halverson, S., Ramsey, L., & Venditti, N. (2014). SUPPRESSION OF FIBER MODAL NOISE INDUCED RADIAL VELOCITY ERRORS FOR BRIGHT EMISSION-LINE CALIBRATION SOURCES. The Astrophysical Journal, 786(1), 18. doi:10.1088/0004-637x/786/1/18

Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378(6555), 355-359. doi:10.1038/378355a0

Mulders, G. D., Pascucci, I., & Apai, D. (2015). A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES. The Astrophysical Journal, 798(2), 112. doi:10.1088/0004-637x/798/2/112

Oliva, E., Origlia, L., Scuderi, S., Benatti, S., Carleo, I., Lapenna, E., … Pedani, M. (2015). Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG. Astronomy & Astrophysics, 581, A47. doi:10.1051/0004-6361/201526291

Petersburg, R. R., McCracken, T. M., Eggerman, D., Jurgenson, C. A., Sawyer, D., Szymkowiak, A. E., & Fischer, D. A. (2018). Modal Noise Mitigation through Fiber Agitation for Fiber-fed Radial Velocity Spectrographs. The Astrophysical Journal, 853(2), 181. doi:10.3847/1538-4357/aaa487

Rawson, E. G., Goodman, J. W., & Norton, R. E. (1980). Frequency dependence of modal noise in multimode optical fibers. Journal of the Optical Society of America, 70(8), 968. doi:10.1364/josa.70.000968

Reiners, A., Bean, J. L., Huber, K. F., Dreizler, S., Seifahrt, A., & Czesla, S. (2010). DETECTING PLANETS AROUND VERY LOW MASS STARS WITH THE RADIAL VELOCITY METHOD. The Astrophysical Journal, 710(1), 432-443. doi:10.1088/0004-637x/710/1/432

Schwab, C., Leon-Saval, S. G., Betters, C. H., Bland-Hawthorn, J., & Mahadevan, S. (2012). Single Mode, Extreme Precision Doppler Spectrographs. Proceedings of the International Astronomical Union, 8(S293), 403-406. doi:10.1017/s1743921313013264

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem