- -

Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones

Mostrar el registro completo del ítem

Peiró Barber, RM.; Jiménez, C.; Perpiña Martin, G.; Soler, JX.; Gisbert Domenech, MC. (2020). Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones. Scientia Horticulturae. 266:1-11. https://doi.org/10.1016/j.scienta.2020.109283

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170968

Ficheros en el ítem

Metadatos del ítem

Título: Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones
Autor: Peiró Barber, Rosa Mª Jiménez, Carles PERPIÑA MARTIN, GORKA Soler, Jaume Xavier Gisbert Domenech, Maria Carmen
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Grapevine is grown as a grafted plant, mainly using phylloxera-resistant rootstocks obtained when this aphid destroyed European vineyards, and the use of a reduced number of rootstocks in each production area is common. ...[+]
Palabras clave: AFLPs/M-AFLPs , Chlorotypes , Genetic variability , In vitro culture , PEG , SSR , Vitis , Water deficit
Derechos de uso: Reserva de todos los derechos
Fuente:
Scientia Horticulturae. (issn: 0304-4238 )
DOI: 10.1016/j.scienta.2020.109283
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.scienta.2020.109283
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CGL2015-70843-R/ES/DESARROLLO DE PROTOCOLOS DE CONSERVACION IN VITRO Y DE CRIOCONSERVACION DE GERMOPLASMA DE VID: ANALISIS DE LA VARIABILIDAD Y CONSERVACION DE PORTAINJERTOS Y VARIEDADES MINORIT/
info:eu-repo/grantAgreement/Agencia Valenciana de Fomento y Garantía Agraria//AGCOOP_D%2F2018%2F007/
Agradecimientos:
The study was supported by the projects CGL2015-70843-R, MINECO co-funded with FEDER funds, and AGCOOP_D/2018/007, funded by FEADER, MAPA and Conselleria d'Agricultura, Desenvolupament Rural, Emergencia Climatica i Transicio ...[+]
Tipo: Artículo

References

Arroyo-García, R., Lefort, F., Andrés, M. T. de, Ibáñez, J., Borrego, J., Jouve, N., … Martínez-Zapater, J. M. (2002). Chloroplast microsatellite polymorphisms inVitisspecies. Genome, 45(6), 1142-1149. doi:10.1139/g02-087

ARROYO-GARCÍA, R., RUIZ-GARCÍA, L., BOLLING, L., OCETE, R., LÓPEZ, M. A., ARNOLD, C., … MARTINEZ-ZAPATER, J. M. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15(12), 3707-3714. doi:10.1111/j.1365-294x.2006.03049.x

Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12 [+]
Arroyo-García, R., Lefort, F., Andrés, M. T. de, Ibáñez, J., Borrego, J., Jouve, N., … Martínez-Zapater, J. M. (2002). Chloroplast microsatellite polymorphisms inVitisspecies. Genome, 45(6), 1142-1149. doi:10.1139/g02-087

ARROYO-GARCÍA, R., RUIZ-GARCÍA, L., BOLLING, L., OCETE, R., LÓPEZ, M. A., ARNOLD, C., … MARTINEZ-ZAPATER, J. M. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15(12), 3707-3714. doi:10.1111/j.1365-294x.2006.03049.x

Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12

Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018

Blum, A. (2016). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4-10. doi:10.1111/pce.12800

Bouslama, M., & Schapaugh, W. T. (1984). Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance 1. Crop Science, 24(5), 933-937. doi:10.2135/cropsci1984.0011183x002400050026x

Bowers, J. E., Dangl, G. S., Vignani, R., & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628-633. doi:10.1139/g96-080

Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247, 107-115. doi:10.1016/j.scienta.2018.11.082

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00442

Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., … Grando, M. S. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13(1). doi:10.1186/1471-2229-13-39

Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J., & Martínez-Sánchez, J. J. (2011). Review Article:Root development in horticultural plants grown under abiotic stress conditions – a review. The Journal of Horticultural Science and Biotechnology, 86(6), 543-556. doi:10.1080/14620316.2011.11512802

Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., … McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312

Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Reports, 26(5), 693-700. doi:10.1007/s00299-006-0275-6

Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., … Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389-402. doi:10.14719/pst.2019.6.4.578

Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools for clone identification: the case of the grapevine cultivar «Traminer». Plant Breeding, 121(6), 531-535. doi:10.1046/j.1439-0523.2002.00762.x

Keller, M., Mills, L. J., & Harbertson, J. F. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Vigor, Yield Formation, and Fruit Ripening. American Journal of Enology and Viticulture, 63(1), 29-39. doi:10.5344/ajev.2011.11078

Lovisolo, C., Lavoie-Lamoureux, A., Tramontini, S., & Ferrandino, A. (2016). Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28(1), 53-66. doi:10.1007/s40626-016-0057-7

Manivannan, P., Abdul Jaleel, C., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R., & Panneerselvam, R. (2007). Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces B: Biointerfaces, 57(1), 69-74. doi:10.1016/j.colsurfb.2007.01.004

Marssaro, A. L., Morais-Lino, L. S., Cruz, J. L., Ledo, C. A. da S., & Santos-Serejo, J. A. dos. (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesquisa Agropecuária Brasileira, 52(12), 1301-1304. doi:10.1590/s0100-204x2017001200021

Meneghetti, S., Costacurta, A., Morreale, G., & Calò, A. (2011). Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins. Molecular Biotechnology, 50(1), 72-85. doi:10.1007/s12033-011-9403-9

Mozafari, A., Ghaderi, N., Havas, F., & Dedejani, S. (2019). Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria × ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256, 108601. doi:10.1016/j.scienta.2019.108601

Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269-5273. doi:10.1073/pnas.76.10.5269

Ollat, N., Bordenave, L., Tandonnet, J. P., Boursiquot, J. M., & Marguerit, E. (2016). Grapevine rootstocks: origins and perspectives. Acta Horticulturae, (1136), 11-22. doi:10.17660/actahortic.2016.1136.2

Peiró, R., Gammoudi, N., Yuste, A., Olmos, A., & Gisbert, C. (2015). Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.). Spanish Journal of Agricultural Research, 13(2), e1005. doi:10.5424/sjar/2015132-7094

Peiró, R., Soler, J. X., Crespo, A., Jiménez, C., Cabello, F., & Gisbert, C. (2018). Genetic variability assessment in ‘Muscat’ grapevines including ‘Muscat of Alexandria’ clones from selection programs. Spanish Journal of Agricultural Research, 16(2), e0702. doi:10.5424/sjar/2018162-12537

Riaz, S., Pap, D., Uretsky, J., Laucou, V., Boursiquot, J.-M., Kocsis, L., & Andrew Walker, M. (2019). Genetic diversity and parentage analysis of grape rootstocks. Theoretical and Applied Genetics, 132(6), 1847-1860. doi:10.1007/s00122-019-03320-5

Romero, P., Botía, P., & Navarro, J. M. (2018). Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agricultural Water Management, 209, 73-93. doi:10.1016/j.agwat.2018.07.012

San Pedro, T., Muñoz, P., Peiró, R., Jiménez, C., Olmos, A., & Gisbert, C. (2017). Evaluation of conditions for in vitro storage of commercial and minor grapevine (Vitis vinifera L.) cultivars. The Journal of Horticultural Science and Biotechnology, 93(1), 19-25. doi:10.1080/14620316.2017.1352462

Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42(3), 367-373. doi:10.1139/g98-168

Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2013). Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20(1), 1-14. doi:10.1111/ajgw.12054

Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol induced drought stress strongly influences seed germination, root morphology and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. doi:10.1016/j.indcrop.2019.01.019

Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985-990. doi:10.1007/bf00211051

Dargie, T., Dor, A., Manuel, A., & Molly, C. (2014). Responses of grapevine rootstocks to drought stress. International Journal of Plant Physiology and Biochemistry, 6(1), 1-6. doi:10.5897/ijppb2013.0199

Upadhyay, A., Saboji, M. D., Reddy, S., Deokar, K., & Karibasappa, G. S. (2007). AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Scientia Horticulturae, 112(2), 176-183. doi:10.1016/j.scienta.2006.12.011

Verslues, P. E., & Bray, E. A. (2005). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany, 57(1), 201-212. doi:10.1093/jxb/erj026

WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & TARR, C. R. (2007). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). 3. Fresh fruit composition and dried grape quality. Australian Journal of Grape and Wine Research, 13(3), 130-141. doi:10.1111/j.1755-0238.2007.tb00243.x

Yıldırım, K., Yağcı, A., Sucu, S., & Tunç, S. (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268. doi:10.1016/j.plaphy.2018.03.034

Zavaglia, C., Pecile, M., Gardiman, M., & Bavaresco, L. (2016). Production of propagating material of grapevine rootstocks in the EU and Italy. Acta Horticulturae, (1136), 57-62. doi:10.17660/actahortic.2016.1136.9

Zhang, M., Chen, Q., & Shen, S. (2010). Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiologiae Plantarum, 33(2), 313-318. doi:10.1007/s11738-010-0549-z

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem