- -

Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Broatch, A. es_ES
dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Xandra-Marcelle, Margot es_ES
dc.contributor.author Escalona-Cornejo, Johan Enrique es_ES
dc.date.accessioned 2021-09-03T03:33:42Z
dc.date.available 2021-09-03T03:33:42Z
dc.date.issued 2021-09-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171316
dc.description.abstract [EN] To comply with the very strict emissions regulation the automotive industry is succeeding in developing ever more efficient engines, and there is scope for more improvements. In this regard, some investigations have suggested that insulating the combustion chamber walls of an internal combustion engine (ICE) yield low thermal losses. Most of the literature available on this topic presents simplified models that do not allow studying in detail the coating impact on engine efficiency. A more precise approach that consists in the combination of Computational Fluid Dynamics (CFD) and Conjugate Heat Transfer (CHT) simulations is used in this paper to predict the heat losses through the combustion chamber walls of a spark ignition (SI) engine. Two configurations are considered for the single cylinder engine: the metallic case and the same engine with coated piston and cylinder head. The insulation material has a low thermal conductivity (k < 1.0W/(mK)). The numerical results are validated by comparison with the results of a 1D heat transfer model and with experimental data for a medium load operation point (3000 rpm -7 bar IMEP). The solutions obtained are analysed in detail in terms of wall temperature distribution and heat transfer. The impact of the coating on the engine efficiency is thus assessed. The CFD-CHT calculations yields very good results in terms of heat transfer prediction during the whole engine cycle. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 724084. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Conjugate heat transfer es_ES
dc.subject Insulation coatings es_ES
dc.subject Spark ignition engine es_ES
dc.subject Combustion es_ES
dc.subject CFD es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087420960617 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/724084/EU/Efficient Additivated Gasoline Lean Engine/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Broatch, A.; Olmeda, P.; Xandra-Marcelle, M.; Escalona-Cornejo, JE. (2021). Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses. International Journal of Engine Research. 22(9):2958-2967. https://doi.org/10.1177/1468087420960617 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087420960617 es_ES
dc.description.upvformatpinicio 2958 es_ES
dc.description.upvformatpfin 2967 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\418905 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 es_ES
dc.description.references Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066 es_ES
dc.description.references Taibani, A., Visaria, M., Phalke, V., Alankar, A., & Krishnan, S. (2019). Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines. SAE International Journal of Engines, 12(2). doi:10.4271/03-12-02-0009 es_ES
dc.description.references Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274 es_ES
dc.description.references Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 es_ES
dc.description.references Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:7<587::aid-er604>3.0.co;2-f es_ES
dc.description.references Dai, X. (Hunter), Singh, S., Krishnan, S. R., & Srinivasan, K. K. (2018). Numerical study of combustion characteristics and emissions of a diesel–methane dual-fuel engine for a wide range of injection timings. International Journal of Engine Research, 21(5), 781-793. doi:10.1177/1468087418783637 es_ES
dc.description.references Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040 es_ES
dc.description.references Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903 es_ES
dc.description.references Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264 es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045 es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081 es_ES
dc.description.references Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 es_ES
dc.description.references Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013 es_ES
dc.description.references Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 es_ES
dc.description.references Lu, Y., Zhang, X., Xiang, P., & Dong, D. (2017). Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Applied Thermal Engineering, 113, 796-812. doi:10.1016/j.applthermaleng.2016.11.070 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem