Mostrar el registro sencillo del ítem
dc.contributor.author | Broatch, A. | es_ES |
dc.contributor.author | Olmeda, P. | es_ES |
dc.contributor.author | Xandra-Marcelle, Margot | es_ES |
dc.contributor.author | Escalona-Cornejo, Johan Enrique | es_ES |
dc.date.accessioned | 2021-09-03T03:33:42Z | |
dc.date.available | 2021-09-03T03:33:42Z | |
dc.date.issued | 2021-09-01 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171316 | |
dc.description.abstract | [EN] To comply with the very strict emissions regulation the automotive industry is succeeding in developing ever more efficient engines, and there is scope for more improvements. In this regard, some investigations have suggested that insulating the combustion chamber walls of an internal combustion engine (ICE) yield low thermal losses. Most of the literature available on this topic presents simplified models that do not allow studying in detail the coating impact on engine efficiency. A more precise approach that consists in the combination of Computational Fluid Dynamics (CFD) and Conjugate Heat Transfer (CHT) simulations is used in this paper to predict the heat losses through the combustion chamber walls of a spark ignition (SI) engine. Two configurations are considered for the single cylinder engine: the metallic case and the same engine with coated piston and cylinder head. The insulation material has a low thermal conductivity (k < 1.0W/(mK)). The numerical results are validated by comparison with the results of a 1D heat transfer model and with experimental data for a medium load operation point (3000 rpm -7 bar IMEP). The solutions obtained are analysed in detail in terms of wall temperature distribution and heat transfer. The impact of the coating on the engine efficiency is thus assessed. The CFD-CHT calculations yields very good results in terms of heat transfer prediction during the whole engine cycle. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 724084. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Conjugate heat transfer | es_ES |
dc.subject | Insulation coatings | es_ES |
dc.subject | Spark ignition engine | es_ES |
dc.subject | Combustion | es_ES |
dc.subject | CFD | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087420960617 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/724084/EU/Efficient Additivated Gasoline Lean Engine/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Broatch, A.; Olmeda, P.; Xandra-Marcelle, M.; Escalona-Cornejo, JE. (2021). Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses. International Journal of Engine Research. 22(9):2958-2967. https://doi.org/10.1177/1468087420960617 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087420960617 | es_ES |
dc.description.upvformatpinicio | 2958 | es_ES |
dc.description.upvformatpfin | 2967 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\418905 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 | es_ES |
dc.description.references | Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066 | es_ES |
dc.description.references | Taibani, A., Visaria, M., Phalke, V., Alankar, A., & Krishnan, S. (2019). Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines. SAE International Journal of Engines, 12(2). doi:10.4271/03-12-02-0009 | es_ES |
dc.description.references | Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274 | es_ES |
dc.description.references | Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 | es_ES |
dc.description.references | Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:7<587::aid-er604>3.0.co;2-f | es_ES |
dc.description.references | Dai, X. (Hunter), Singh, S., Krishnan, S. R., & Srinivasan, K. K. (2018). Numerical study of combustion characteristics and emissions of a diesel–methane dual-fuel engine for a wide range of injection timings. International Journal of Engine Research, 21(5), 781-793. doi:10.1177/1468087418783637 | es_ES |
dc.description.references | Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040 | es_ES |
dc.description.references | Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903 | es_ES |
dc.description.references | Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264 | es_ES |
dc.description.references | Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045 | es_ES |
dc.description.references | Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081 | es_ES |
dc.description.references | Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 | es_ES |
dc.description.references | Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013 | es_ES |
dc.description.references | Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 | es_ES |
dc.description.references | Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 | es_ES |
dc.description.references | Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 | es_ES |
dc.description.references | Lu, Y., Zhang, X., Xiang, P., & Dong, D. (2017). Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Applied Thermal Engineering, 113, 796-812. doi:10.1016/j.applthermaleng.2016.11.070 | es_ES |