- -

Study of the engine configuration effect on the maximum achievable load in CAI using water injection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the engine configuration effect on the maximum achievable load in CAI using water injection

Mostrar el registro completo del ítem

Valero-Marco, J.; Lehrheuer, B.; López, JJ.; Pischinger, S. (2021). Study of the engine configuration effect on the maximum achievable load in CAI using water injection. International Journal of Engine Research. 22(9):2945-2957. https://doi.org/10.1177/1468087420960858

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171327

Ficheros en el ítem

Metadatos del ítem

Título: Study of the engine configuration effect on the maximum achievable load in CAI using water injection
Autor: Valero-Marco, J. Lehrheuer, B. López, J. Javier Pischinger, S.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The approach of this research is to enlarge the knowledge about the methodologies to increase the maximum achievable load degree in the context of gasoline CAI engines. This work is the continuation of a previous work ...[+]
Palabras clave: CAI , Controlled autoignition , HCCI , Gasoline engines , Four stroke , Water injection , Wider operating range
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087420960858
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087420960858
Código del Proyecto:
info:eu-repo/grantAgreement/DFG//FOR 2401/
Descripción: This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420960858.
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research work was part of the Research Unit (Forschergruppe) FOR 2401 Optimization ...[+]
Tipo: Artículo

References

Onishi, S., Jo, S. H., Shoda, K., Jo, P. D., & Kato, S. (1979). Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines. SAE Technical Paper Series. doi:10.4271/790501

Noguchi, M., Tanaka, Y., Tanaka, T., & Takeuchi, Y. (1979). A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products during Combustion. SAE Technical Paper Series. doi:10.4271/790840

Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V., & Dryer, F. L. (1998). Oxidation of automotive primary reference fuels at elevated pressures. Symposium (International) on Combustion, 27(1), 379-387. doi:10.1016/s0082-0784(98)80426-8 [+]
Onishi, S., Jo, S. H., Shoda, K., Jo, P. D., & Kato, S. (1979). Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines. SAE Technical Paper Series. doi:10.4271/790501

Noguchi, M., Tanaka, Y., Tanaka, T., & Takeuchi, Y. (1979). A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products during Combustion. SAE Technical Paper Series. doi:10.4271/790840

Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V., & Dryer, F. L. (1998). Oxidation of automotive primary reference fuels at elevated pressures. Symposium (International) on Combustion, 27(1), 379-387. doi:10.1016/s0082-0784(98)80426-8

Tanaka, S. (2003). Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combustion and Flame, 132(1-2), 219-239. doi:10.1016/s0010-2180(02)00457-1

Zhang, Y., & Zhao, H. (2014). Investigation of combustion, performance and emission characteristics of 2-stroke and 4-stroke spark ignition and CAI/HCCI operations in a DI gasoline. Applied Energy, 130, 244-255. doi:10.1016/j.apenergy.2014.05.036

Zhao, H., Peng, Z., & Ladommatos, N. (2001). Understanding of controlled autoignition combustion in a four-stroke gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 215(12), 1297-1310. doi:10.1243/0954407011528824

Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S., & Yilmaz, E. (2015). Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Processing Technology, 130, 275-281. doi:10.1016/j.fuproc.2014.10.026

Uyumaz, A. (2015). An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures. Energy Conversion and Management, 98, 199-207. doi:10.1016/j.enconman.2015.03.043

Lee, K., Cho, S., Kim, N., & Min, K. (2015). A study on combustion control and operating range expansion of gasoline HCCI. Energy, 91, 1038-1048. doi:10.1016/j.energy.2015.08.031

Jang, J., Lee, Y., Cho, C., Woo, Y., & Bae, C. (2013). Improvement of DME HCCI engine combustion by direct injection and EGR. Fuel, 113, 617-624. doi:10.1016/j.fuel.2013.06.001

Dahl, D., & Denbratt, I. (2011). HCCI/SCCI Load Limits and Stoichiometric Operation in a Multicylinder Naturally Aspirated Spark Ignition Engine Operated on Gasoline and E85. International Journal of Engine Research, 12(1), 58-68. doi:10.1177/14680874jer392450

Caton, P. A., Song, H. H., Kaahaaina, N. B., & Edwards, C. F. (2005). Residual-effected homogeneous charge compression ignition with delayed intake-valve closing at elevated compression ratio. International Journal of Engine Research, 6(4), 399-419. doi:10.1243/146808705x30431

Yang, J. (2005). Expanding the operating range of homogeneous charge compression ignition-spark ignition dual-mode engines in the homogeneous charge compression ignition mode. International Journal of Engine Research, 6(4), 279-288. doi:10.1243/146808705x30422

Yoshizawa, K., Teraji, A., Miyakubo, H., Yamaguchi, K., & Urushihara, T. (2006). Study of High Load Operation Limit Expansion for Gasoline Compression Ignition Engines. Journal of Engineering for Gas Turbines and Power, 128(2), 377-387. doi:10.1115/1.1805548

Li, Y., Zhao, H., Brouzos, N., & Leach, B. (2007). Managing controlled auto-ignition combustion by injection on a direct-injection gasoline engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221(9), 1125-1137. doi:10.1243/09544070jauto372

Xu, H. M., Wyszynski, M. L., Megaritis, A., Yap, D., Wilson, T., Qiao, J., … Peucheret, S. (2007). Research on expansion of operating windows of controlled homogeneous auto-ignition engines. International Journal of Engine Research, 8(1), 29-40. doi:10.1243/14680874jer01106

Dempsey, A. B., Das Adhikary, B., Viswanathan, S., & Reitz, R. D. (2012). Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. Journal of Engineering for Gas Turbines and Power, 134(8). doi:10.1115/1.4006703

Megaritis, A., Yap, D., & Wyszynski, M. L. (2007). Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping. Energy, 32(12), 2396-2400. doi:10.1016/j.energy.2007.05.010

Golzari, R., Zhao, H., Hall, J., Bassett, M., Williams, J., & Pearson, R. (2019). Impact of intake port injection of water on boosted downsized gasoline direct injection engine combustion, efficiency and emissions. International Journal of Engine Research, 22(1), 295-315. doi:10.1177/1468087419832791

Hoppe, F., Thewes, M., Baumgarten, H., & Dohmen, J. (2015). Water injection for gasoline engines: Potentials, challenges, and solutions. International Journal of Engine Research, 17(1), 86-96. doi:10.1177/1468087415599867

Schmitt, S., Wick, M., Wouters, C., Ruwe, L., Graf, I., Andert, J., … Kohse-Höinghaus, K. (2020). Effects of water addition on the combustion of iso-octane investigated in laminar flames, low-temperature reactors, and an HCCI engine. Combustion and Flame, 212, 433-447. doi:10.1016/j.combustflame.2019.11.023

Valero-Marco, J., Lehrheuer, B., López, J. J., & Pischinger, S. (2018). Potential of water direct injection in a CAI/HCCI gasoline engine to extend the operating range towards higher loads. Fuel, 231, 317-327. doi:10.1016/j.fuel.2018.05.093

Tongroon, M., & Zhao, H. (2014). Thermal and chemical effects of fuel direct injection on kinetically controlled combustion of alcohol and gasoline fuels. International Journal of Engine Research, 16(8), 982-993. doi:10.1177/1468087414561809

Zhen, X., Wang, Y., Xu, S., Zhu, Y., Tao, C., Xu, T., & Song, M. (2012). The engine knock analysis – An overview. Applied Energy, 92, 628-636. doi:10.1016/j.apenergy.2011.11.079

Caton, J. A. (2014). Combustion phasing for maximum efficiency for conventional and high efficiency engines. Energy Conversion and Management, 77, 564-576. doi:10.1016/j.enconman.2013.09.060

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem