Mostrar el registro sencillo del ítem
dc.contributor.author | Lorente-Leyva, Leandro L. | es_ES |
dc.contributor.author | Alemany Díaz, María Del Mar | es_ES |
dc.contributor.author | Peluffo-Ordóñez, Diego H. | es_ES |
dc.contributor.author | Herrera-Granda, Israel D. | es_ES |
dc.date.accessioned | 2021-09-03T03:34:19Z | |
dc.date.available | 2021-09-03T03:34:19Z | |
dc.date.issued | 2021-01-07 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171329 | |
dc.description.abstract | [EN] This document presents a comparison of demand forecasting methods, with the aim of improving demand forecasting and with it, the production planning system of Ecuadorian textile industry. These industries present problems in providing a reliable estimate of future demand due to recent changes in the Ecuadorian context. The impact on demand for textile products has been observed in variables such as sales prices and manufacturing costs, manufacturing gross domestic product and the unemployment rate. Being indicators that determine to a great extent, the quality and accuracy of the forecast, generating also, uncertainty scenarios. For this reason, the aim of this work is focused on the demand forecasting for textile products by comparing a set of classic methods such as ARIMA, STL Decomposition, Holt-Winters and machine learning, Artificial Neural Networks, Bayesian Networks, Random Forest, Support Vector Machine, taking into consideration all the above mentioned, as an essential input for the production planning and sales of the textile industries. And as a support, when developing strategies for demand management and medium-term decision making of this sector under study. Finally, the effectiveness of the methods is demonstrated by comparing them with different indicators that evaluate the forecast error, with the Multi-layer Neural Networks having the best results with the least error and the best performance. | es_ES |
dc.description.sponsorship | The authors are greatly grateful by the support given by the SDAS Research Group (https://sdas-group.com/). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.relation.ispartof | LOD 2020: Machine Learning, Optimization, and Data Science | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Demand forecasting methods | es_ES |
dc.subject | Textile industry | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Classical methods | es_ES |
dc.subject | Forecast error | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | A Comparison of Machine Learning and Classical Demand Forecasting Methods: A Case Study of Ecuadorian Textile Industry | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-64580-9_11 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Lorente-Leyva, LL.; Alemany Díaz, MDM.; Peluffo-Ordóñez, DH.; Herrera-Granda, ID. (2021). A Comparison of Machine Learning and Classical Demand Forecasting Methods: A Case Study of Ecuadorian Textile Industry. Lecture Notes in Computer Science. 131-142. https://doi.org/10.1007/978-3-030-64580-9_11 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th International Conference on Machine Learning, Optimization, and Data Science (LOD 2020) | es_ES |
dc.relation.conferencedate | Julio 19-23,2020 | es_ES |
dc.relation.conferenceplace | Siena, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-64580-9_11 | es_ES |
dc.description.upvformatpinicio | 131 | es_ES |
dc.description.upvformatpfin | 142 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\428997 | es_ES |
dc.description.references | Silva, P.C.L., Sadaei, H.J., Ballini, R., Guimaraes, F.G.: Probabilistic forecasting with fuzzy time series. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2922152 | es_ES |
dc.description.references | Lorente-Leyva, L.L., et al.: Optimization of the master production scheduling in a textile industry using genetic algorithm. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 674–685. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_57 | es_ES |
dc.description.references | Seifert, M., Siemsen, E., Hadida, A.L., Eisingerich, A.B.: Effective judgmental forecasting in the context of fashion products. J. Oper. Manag. 36, 33–45 (2015). https://doi.org/10.1016/j.jom.2015.02.001 | es_ES |
dc.description.references | Tratar, L.F., Strmčnik, E.: Forecasting methods in engineering. IOP Conf. Ser. Mater. Sci. Eng. 657, 012027 (2019). https://doi.org/10.1088/1757-899X/657/1/012027 | es_ES |
dc.description.references | Prak, D., Teunter, R.: A general method for addressing forecasting uncertainty in inventory models. Int. J. Forecast. 35, 224–238 (2019). https://doi.org/10.1016/j.ijforecast.2017.11.004 | es_ES |
dc.description.references | Gaba, A., Tsetlin, I., Winkler, R.L.: Combining interval forecasts. Decis. Anal. 14, 1–20 (2017). https://doi.org/10.1287/deca.2016.0340 | es_ES |
dc.description.references | Zhang, B., Duan, D., Ma, Y.: Multi-product expedited ordering with demand forecast updates. Int. J. Prod. Econ. 206, 196–208 (2018). https://doi.org/10.1016/j.ijpe.2018.09.034 | es_ES |
dc.description.references | Januschowski, T., et al.: Criteria for classifying forecasting methods. Int. J. Forecast. 36, 167–177 (2020). https://doi.org/10.1016/j.ijforecast.2019.05.008 | es_ES |
dc.description.references | Box, G.E., Jenkins, G.M., Reinsel, C., Ljung, M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, Hoboken (2015) | es_ES |
dc.description.references | Murray, P.W., Agard, B., Barajas, M.A.: Forecast of individual customer’s demand from a large and noisy dataset. Comput. Ind. Eng. 118, 33–43 (2018). https://doi.org/10.1016/j.cie.2018.02.007 | es_ES |
dc.description.references | Bruzda, J.: Quantile smoothing in supply chain and logistics forecasting. Int. J. Prod. Econ. 208, 122–139 (2019). https://doi.org/10.1016/j.ijpe.2018.11.015 | es_ES |
dc.description.references | Bajari, P., Nekipelov, D., Ryan, S.P., Yang, M.: Machine learning methods for demand estimation. Am. Econ. Rev. 105, 481–485 (2015). https://doi.org/10.1257/aer.p20151021 | es_ES |
dc.description.references | Villegas, M.A., Pedregal, D.J., Trapero, J.R.: A support vector machine for model selection in demand forecasting applications. Comput. Ind. Eng. 121, 1–7 (2018). https://doi.org/10.1016/j.cie.2018.04.042 | es_ES |
dc.description.references | Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 362–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_31 | es_ES |
dc.description.references | Dudek, G.: Multilayer perceptron for short-term load forecasting: from global to local approach. Neural Comput. Appl. 32(8), 3695–3707 (2019). https://doi.org/10.1007/s00521-019-04130-y | es_ES |
dc.description.references | Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. (2019). https://doi.org/10.1016/j.ijforecast.2019.07.001 | es_ES |
dc.description.references | Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., Wang, F.Y.: Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler. IEEE Trans. Comput. Soc. Syst. 6, 547–553 (2019). https://doi.org/10.1109/TCSS.2019.2914499 | es_ES |
dc.description.references | Zhang, X., Zheng, Y., Wang, S.: A demand forecasting method based on stochastic frontier analysis and model average: an application in air travel demand forecasting. J. Syst. Sci. Complexity 32(2), 615–633 (2019). https://doi.org/10.1007/s11424-018-7093-0 | es_ES |
dc.description.references | Lorente-Leyva, L.L., et al.: Artificial neural networks for urban water demand forecasting: a case study. J. Phys: Conf. Ser. 1284(1), 012004 (2019). https://doi.org/10.1088/1742-6596/1284/1/012004 | es_ES |
dc.description.references | Scott, S.L., Varian, H.R.: Predicting the present with Bayesian structural time series. Int. J. Math. Model. Numer. Optim. 5, 4–23 (2014). https://doi.org/10.1504/IJMMNO.2014.059942 | es_ES |
dc.description.references | Gallego, V., Suárez-García, P., Angulo, P., Gómez-Ullate, D.: Assessing the effect of advertising expenditures upon sales: a Bayesian structural time series model. Appl. Stoch. Model. Bus. Ind. 35, 479–491 (2019). https://doi.org/10.1002/asmb.2460 | es_ES |
dc.description.references | Han, S., Ko, Y., Kim, J., Hong, T.: Housing market trend forecasts through statistical comparisons based on big data analytic methods. J. Manag. Eng. 34 (2018). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000583 | es_ES |
dc.description.references | Lee, J.: A neural network method for nonlinear time series analysis. J. Time Ser. Econom. 11, 1–18 (2019). https://doi.org/10.1515/jtse-2016-0011 | es_ES |
dc.description.references | Trull, O., García-Díaz, J.C., Troncoso, A.: Initialization methods for multiple seasonal holt-winters forecasting models. Mathematics 8, 1–16 (2020). https://doi.org/10.3390/math8020268 | es_ES |
dc.description.references | Biau, G., Scornet, E.: A random forest guided tour. Test 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7 | es_ES |