dc.contributor.author |
Gutiérrez-Gil, Jorge
|
es_ES |
dc.contributor.author |
García-Andrés, Francesc Xavier
|
es_ES |
dc.contributor.author |
Martínez Casas, José
|
es_ES |
dc.contributor.author |
Nadal, Enrique
|
es_ES |
dc.contributor.author |
Denia Guzmán, Francisco David
|
es_ES |
dc.date.accessioned |
2021-09-04T03:40:54Z |
|
dc.date.available |
2021-09-04T03:40:54Z |
|
dc.date.issued |
2020-08-01 |
es_ES |
dc.identifier.issn |
1048-9002 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/171416 |
|
dc.description.abstract |
[EN] Rolling noise emitted by railway wheels is a problem that affects human health and limits
the expansion of the railway network. It is caused by the wheel vibration due to the wheelrail
contact force, and it is important in almost all the vehicle velocity range. The minimization
of noise radiation associated with changes on the wheel web is discussed in this work,
focusing on potential shape modifications in existing wheels in the form of a perforation distribution
over the web. Such a post-manufacturing technique is a cost-effective solution that
can be performed in a relatively short term. The implemented objective function is directly
related to the overall radiated sound power, which is minimized using a genetic algorithmbased
optimizer. In the acoustic model, radiation efficiencies are approximated to unity, the
accuracy of this assumption being also studied in the work. The results reflect that an optimized
distribution of perforations on the web of a railway wheel can reduce the total sound
power level, by about 5 dB(A) and 2 dB(A) for curved and straight web, respectively. The
mitigation of the radiated sound power is due to the fact that certain wheel vibration
modes are modified and shifted to other frequencies where they are less excited. Finally,
the relevance of the cross-sectional curvature of the web is explored by studying two different
web geometries, suggesting that it can strongly influence the noise mitigation effects of
the perforation pattern. |
es_ES |
dc.description.sponsorship |
The authors gratefully acknowledge the financial support of Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion, European Regional Development Fund (project TRA2017-84701-R), and Conselleria d'Educacio, Investigacio, Cultura i Esport (Generalitat Valenciana, project Prometeo/2016/007). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.relation.ispartof |
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Acoustic radiation analysis |
es_ES |
dc.subject |
Railway wheel |
es_ES |
dc.subject |
Perforations |
es_ES |
dc.subject |
Optimization |
es_ES |
dc.subject |
Evolutive algorithms |
es_ES |
dc.subject |
Response surface |
es_ES |
dc.subject |
Acoustic emission |
es_ES |
dc.subject |
Noise control |
es_ES |
dc.subject |
Propagation and radiation |
es_ES |
dc.subject.classification |
INGENIERIA MECANICA |
es_ES |
dc.title |
Optimized perforation schemes in railway wheels towards acoustic radiation mitigation |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1115/1.4046681 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials |
es_ES |
dc.description.bibliographicCitation |
Gutiérrez-Gil, J.; García-Andrés, FX.; Martínez Casas, J.; Nadal, E.; Denia Guzmán, FD. (2020). Optimized perforation schemes in railway wheels towards acoustic radiation mitigation. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME. 142(4):1-14. https://doi.org/10.1115/1.4046681 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1115/1.4046681 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
14 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
142 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.relation.pasarela |
S\403840 |
es_ES |
dc.contributor.funder |
GENERALITAT VALENCIANA |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
European Enviornment Agency (EEA) , “Enviornmental Indicator Report.” 2017. https://www.eea.europa.eu/airs/2017/environment-and-health/environmental-noise”. Accessed March 2, 2020. |
es_ES |
dc.description.references |
Guski, R., Schreckenberg, D., & Schuemer, R. (2017). WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. International Journal of Environmental Research and Public Health, 14(12), 1539. doi:10.3390/ijerph14121539 |
es_ES |
dc.description.references |
Bunn, F., & Zannin, P. H. T. (2016). Assessment of railway noise in an urban setting. Applied Acoustics, 104, 16-23. doi:10.1016/j.apacoust.2015.10.025 |
es_ES |
dc.description.references |
Colaço, A., Alves Costa, P., Amado-Mendes, P., & Godinho, L. (2017). Prediction of Vibrations and Reradiated Noise Due to Railway Traffic: A Comprehensive Hybrid Model Based on a Finite Element Method and Method of Fundamental Solutions Approach. Journal of Vibration and Acoustics, 139(6). doi:10.1115/1.4036929 |
es_ES |
dc.description.references |
JONES, C. J. C., & THOMPSON, D. J. (2000). ROLLING NOISE GENERATED BY RAILWAY WHEELS WITH VISCO-ELASTIC LAYERS. Journal of Sound and Vibration, 231(3), 779-790. doi:10.1006/jsvi.1999.2562 |
es_ES |
dc.description.references |
Cigada, A., Manzoni, S., & Vanali, M. (2008). Vibro-acoustic characterization of railway wheels. Applied Acoustics, 69(6), 530-545. doi:10.1016/j.apacoust.2007.01.002 |
es_ES |
dc.description.references |
Thompson, D. J., & Gautier, P.-E. (2006). Review of research into wheel/rail rolling noise reduction. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 220(4), 385-408. doi:10.1243/0954409jrrt79 |
es_ES |
dc.description.references |
Putra, A., & Thompson, D. J. (2010). Sound radiation from perforated plates. Journal of Sound and Vibration, 329(20), 4227-4250. doi:10.1016/j.jsv.2010.04.020 |
es_ES |
dc.description.references |
Efthimeros, G. A., Photeinos, D. I., Diamantis, Z. G., & Tsahalis, D. T. (2002). Vibration/noise optimization of a FEM railway wheel model. Engineering Computations, 19(8), 922-931. doi:10.1108/02644400210450350 |
es_ES |
dc.description.references |
Nielsen, J. C. O., & Fredö, C. R. (2006). Multi-disciplinary optimization of railway wheels. Journal of Sound and Vibration, 293(3-5), 510-521. doi:10.1016/j.jsv.2005.08.063 |
es_ES |
dc.description.references |
Zhang, G., Tong, X., Lin, J., & Zhu, X. (2016). Influence of web plate holes on the radiation noise characteristics of wheels of the high speed train. Journal of Vibroengineering, 18(7), 4870-4884. doi:10.21595/jve.2016.17594 |
es_ES |
dc.description.references |
Janssens, M. H. A., Thompson, D. J., and de Beer, F. G., 2014, “TWINS Version 3.3 Track-Wheel Interaction Noise Software Theoretical Manual”, TNO Report, July. |
es_ES |
dc.description.references |
Tran, L.-H., Hoang, T., Duhamel, D., Foret, G., Messad, S., & Loaec, A. (2018). A Fast Analytic Method to Calculate the Dynamic Response of Railways Sleepers. Journal of Vibration and Acoustics, 141(1). doi:10.1115/1.4040392 |
es_ES |
dc.description.references |
FUENMAYOR, F. J., DENIA, F. D., ALBELDA, J., & GINER, E. (2002). H -ADAPTIVE REFINEMENT STRATEGY FOR ACOUSTIC PROBLEMS WITH A SET OF NATURAL FREQUENCIES. Journal of Sound and Vibration, 255(3), 457-479. doi:10.1006/jsvi.2001.4165 |
es_ES |
dc.description.references |
Johnson, K. L. (1985). Contact Mechanics. doi:10.1017/cbo9781139171731 |
es_ES |
dc.description.references |
Martínez-Casas, J., Di Gialleonardo, E., Bruni, S., & Baeza, L. (2014). A comprehensive model of the railway wheelset–track interaction in curves. Journal of Sound and Vibration, 333(18), 4152-4169. doi:10.1016/j.jsv.2014.03.032 |
es_ES |
dc.description.references |
Remington, P. J. (1976). Wheel/rail noise—Part IV: Rolling noise. Journal of Sound and Vibration, 46(3), 419-436. doi:10.1016/0022-460x(76)90864-6 |
es_ES |
dc.description.references |
Remington, P., & Webb, J. (1996). ESTIMATION OF WHEEL/RAIL INTERACTION FORCES IN THE CONTACT AREA DUE TO ROUGHNESS. Journal of Sound and Vibration, 193(1), 83-102. doi:10.1006/jsvi.1996.0249 |
es_ES |
dc.description.references |
Thompson, D. J. (2003). The influence of the contact zone on the excitation of wheel/rail noise. Journal of Sound and Vibration, 267(3), 523-535. doi:10.1016/s0022-460x(03)00712-0 |
es_ES |
dc.description.references |
THOMPSON, D. J., & REMINGTON, P. J. (2000). THE EFFECTS OF TRANSVERSE PROFILE ON THE EXCITATION OF WHEEL/RAIL NOISE. Journal of Sound and Vibration, 231(3), 537-548. doi:10.1006/jsvi.1999.2543 |
es_ES |
dc.description.references |
Estrada, H., Uris, A., & Meseguer, F. (2012). Acoustic radiation efficiency of a periodically corrugated rigid piston. Applied Physics Letters, 101(10), 104103. doi:10.1063/1.4748868 |
es_ES |
dc.description.references |
THOMPSON, D. J., & Jones, C. J. C. (2002). SOUND RADIATION FROM A VIBRATING RAILWAY WHEEL. Journal of Sound and Vibration, 253(2), 401-419. doi:10.1006/jsvi.2001.4061 |
es_ES |
dc.description.references |
Remington, P. J. (1976). Wheel/rail noise— Part I: Characterization of the wheel/rail dynamic system. Journal of Sound and Vibration, 46(3), 359-379. doi:10.1016/0022-460x(76)90861-0 |
es_ES |
dc.description.references |
Remington, P. J. (1987). Wheel/rail rolling noise, I: Theoretical analysis. The Journal of the Acoustical Society of America, 81(6), 1805-1823. doi:10.1121/1.394746 |
es_ES |
dc.description.references |
Davis, C. (1962). The norm of the Schur product operation. Numerische Mathematik, 4(1), 343-344. doi:10.1007/bf01386329 |
es_ES |
dc.subject.ods |
09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación |
es_ES |
dc.subject.ods |
03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades |
es_ES |