- -

Influence of pre-polymerisation atmosphere on the properties of pre- and poly(glycerol sebacate)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Influence of pre-polymerisation atmosphere on the properties of pre- and poly(glycerol sebacate)

Show full item record

Martín-Cabezuelo, R.; Vilariño, G.; Vallés Lluch, A. (2021). Influence of pre-polymerisation atmosphere on the properties of pre- and poly(glycerol sebacate). Materials Science and Engineering C. 119:1-10. https://doi.org/10.1016/j.msec.2020.111429

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171418

Files in this item

Item Metadata

Title: Influence of pre-polymerisation atmosphere on the properties of pre- and poly(glycerol sebacate)
Author: Martín-Cabezuelo, Rubén Vilariño, Guillermo Vallés Lluch, Ana
UPV Unit: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Poly(glycerol sebacate) (PGS) is a versatile biodegradable biomaterial on account of its adjustable mechanical properties as an elastomeric polyester. Nevertheless, it has shown dissimilar results when synthesised by ...[+]
Subjects: Poly(glycerol sebacate) , Polymerisation atmosphere , Glycerol , Polycondensation , Pre-polymerisation , Curing
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Materials Science and Engineering C. (issn: 0928-4931 )
DOI: 10.1016/j.msec.2020.111429
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.msec.2020.111429
Type: Artículo

References

Wang, Y., Kim, Y. M., & Langer, R. (2003). In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research, 66A(1), 192-197. doi:10.1002/jbm.a.10534

Rai, R., Tallawi, M., Grigore, A., & Boccaccini, A. R. (2012). Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 37(8), 1051-1078. doi:10.1016/j.progpolymsci.2012.02.001

Kharazi, A., Shirazaki, P., & Varshosaz, J. (2017). Electrospun Gelatin/poly(Glycerol Sebacate) Membrane with Controlled Release of Antibiotics for Wound Dressing. Advanced Biomedical Research, 6(1), 105. doi:10.4103/abr.abr_197_16 [+]
Wang, Y., Kim, Y. M., & Langer, R. (2003). In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research, 66A(1), 192-197. doi:10.1002/jbm.a.10534

Rai, R., Tallawi, M., Grigore, A., & Boccaccini, A. R. (2012). Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 37(8), 1051-1078. doi:10.1016/j.progpolymsci.2012.02.001

Kharazi, A., Shirazaki, P., & Varshosaz, J. (2017). Electrospun Gelatin/poly(Glycerol Sebacate) Membrane with Controlled Release of Antibiotics for Wound Dressing. Advanced Biomedical Research, 6(1), 105. doi:10.4103/abr.abr_197_16

Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602

Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259

Stafiej, P., Küng, F., Thieme, D., Czugala, M., Kruse, F. E., Schubert, D. W., & Fuchsluger, T. A. (2017). Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices. Materials Science and Engineering: C, 71, 764-770. doi:10.1016/j.msec.2016.10.058

Salehi, S., Fathi, M., Javanmard, S., Barneh, F., & Moshayedi, M. (2015). Fabrication and characterization of biodegradable polymeric films as a corneal stroma substitute. Advanced Biomedical Research, 4(1), 9. doi:10.4103/2277-9175.148291

Frydrych, M., Román, S., MacNeil, S., & Chen, B. (2015). Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomaterialia, 18, 40-49. doi:10.1016/j.actbio.2015.03.004

Hu, J., Kai, D., Ye, H., Tian, L., Ding, X., Ramakrishna, S., & Loh, X. J. (2017). Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Materials Science and Engineering: C, 70, 1089-1094. doi:10.1016/j.msec.2016.03.035

Rai, R., Tallawi, M., Barbani, N., Frati, C., Madeddu, D., Cavalli, S., … Boccaccini, A. R. (2013). Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Materials Science and Engineering: C, 33(7), 3677-3687. doi:10.1016/j.msec.2013.04.058

Masoumi, N., Johnson, K. L., Howell, M. C., & Engelmayr, G. C. (2013). Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomaterialia, 9(4), 5974-5988. doi:10.1016/j.actbio.2013.01.001

Lin, D., Yang, K., Tang, W., Liu, Y., Yuan, Y., & Liu, C. (2015). A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 131, 1-11. doi:10.1016/j.colsurfb.2015.04.031

Tevlek, A., Hosseinian, P., Ogutcu, C., Turk, M., & Aydin, H. M. (2017). Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. Materials Science and Engineering: C, 72, 316-324. doi:10.1016/j.msec.2016.11.082

Masoudi Rad, M., Nouri Khorasani, S., Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Foroughi, M. R., Kharaziha, M., … Ramakrishna, S. (2017). Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application. Materials Science and Engineering: C, 80, 75-87. doi:10.1016/j.msec.2017.05.125

Hu, T., Wu, Y., Zhao, X., Wang, L., Bi, L., Ma, P. X., & Guo, B. (2019). Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chemical Engineering Journal, 366, 208-222. doi:10.1016/j.cej.2019.02.072

Wu, Y., Wang, L., Hu, T., Ma, P. X., & Guo, B. (2018). Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. Journal of Colloid and Interface Science, 518, 252-262. doi:10.1016/j.jcis.2018.02.036

Wu, Y., Wang, L., Guo, B., & X Ma, P. (2014). Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation. Journal of Materials Chemistry B, 2(23), 3674. doi:10.1039/c3tb21716g

Gultekinoglu, M., Öztürk, Ş., Chen, B., Edirisinghe, M., & Ulubayram, K. (2019). Preparation of poly(glycerol sebacate) fibers for tissue engineering applications. European Polymer Journal, 121, 109297. doi:10.1016/j.eurpolymj.2019.109297

Wu, Y., Wang, L., Zhao, X., Hou, S., Guo, B., & Ma, P. X. (2016). Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials, 104, 18-31. doi:10.1016/j.biomaterials.2016.07.011

Zhao, X., Wu, Y., Du, Y., Chen, X., Lei, B., Xue, Y., & Ma, P. X. (2015). A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 3(16), 3222-3233. doi:10.1039/c4tb01693a

Nagata, M., Machida, T., Sakai, W., & Tsutsumi, N. (1999). Synthesis, characterization, and enzymatic degradation of network aliphatic copolyesters. Journal of Polymer Science Part A: Polymer Chemistry, 37(13), 2005-2011. doi:10.1002/(sici)1099-0518(19990701)37:13<2005::aid-pola14>3.0.co;2-h

Kemppainen, J. M., & Hollister, S. J. (2010). Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A, 94A(1), 9-18. doi:10.1002/jbm.a.32653

Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406-419. doi:10.1016/j.eurpolymj.2017.01.001

Ravichandran, R., Venugopal, J. R., Mukherjee, S., Sundarrajan, S., & Ramakrishna, S. (2015). Elastomeric Core/Shell Nanofibrous Cardiac Patch as a Biomimetic Support for Infarcted Porcine Myocardium. Tissue Engineering Part A, 21(7-8), 1288-1298. doi:10.1089/ten.tea.2014.0265

Gao, J., Crapo, P. M., & Wang, Y. (2006). Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering. Tissue Engineering, 12(4), 917-925. doi:10.1089/ten.2006.12.917

Mitsak, A. G., Dunn, A. M., & Hollister, S. J. (2012). Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 11, 3-15. doi:10.1016/j.jmbbm.2011.11.003

Hsu, C.-N., Lee, P.-Y., Tuan-Mu, H.-Y., Li, C.-Y., & Hu, J.-J. (2017). Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(2), 760-770. doi:10.1002/jbm.b.33876

Li, X., Hong, A. T.-L., Naskar, N., & Chung, H.-J. (2015). Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties. Biomacromolecules, 16(5), 1525-1533. doi:10.1021/acs.biomac.5b00018

Aydin, H. M., Salimi, K., Rzayev, Z. M. O., & Pişkin, E. (2013). Microwave-assisted rapid synthesis of poly(glycerol-sebacate) elastomers. Biomaterials Science, 1(5), 503. doi:10.1039/c3bm00157a

Lau, C. C., Bayazit, M. K., Knowles, J. C., & Tang, J. (2017). Tailoring degree of esterification and branching of poly(glycerol sebacate) by energy efficient microwave irradiation. Polymer Chemistry, 8(26), 3937-3947. doi:10.1039/c7py00862g

Bhanu, V. A., & Kishore, K. (1991). Role of oxygen in polymerization reactions. Chemical Reviews, 91(2), 99-117. doi:10.1021/cr00002a001

Conley, R. T. (1967). Studies of the Stability of Condensation Polymers in Oxygen-Containing Atmospheres. Journal of Macromolecular Science: Part A - Chemistry, 1(1), 81-106. doi:10.1080/10601326708053918

SZWARC, M. (1956). ‘Living’ Polymers. Nature, 178(4543), 1168-1169. doi:10.1038/1781168a0

Chen, Q.-Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., … Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29(1), 47-57. doi:10.1016/j.biomaterials.2007.09.010

Vallés-Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2010). Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P(EMA-co-HEA). European Polymer Journal, 46(5), 910-917. doi:10.1016/j.eurpolymj.2010.02.004

Gaharwar, A. K., Patel, A., Dolatshahi-Pirouz, A., Zhang, H., Rangarajan, K., Iviglia, G., … Khademhosseini, A. (2015). Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomaterials Science, 3(1), 46-58. doi:10.1039/c4bm00222a

Chen, Q., Liang, S., & Thouas, G. A. (2013). Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 38(3-4), 584-671. doi:10.1016/j.progpolymsci.2012.05.003

Ma, Y., Feng, X., Rogers, J. A., Huang, Y., & Zhang, Y. (2017). Design and application of ‘J-shaped’ stress–strain behavior in stretchable electronics: a review. Lab on a Chip, 17(10), 1689-1704. doi:10.1039/c7lc00289k

Ifkovits, J. L., Padera, R. F., & Burdick, J. A. (2008). Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Biomedical Materials, 3(3), 034104. doi:10.1088/1748-6041/3/3/034104

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record