- -

Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juste Vidal, Belen Jeanine es_ES
dc.contributor.author Morató-Rafet, Sergio es_ES
dc.contributor.author Garcia, C. es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2021-09-04T03:41:00Z
dc.date.available 2021-09-04T03:41:00Z
dc.date.issued 2020-02-21 es_ES
dc.identifier.issn 0168-9002 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171419
dc.description.abstract [EN] Different methods exist to verify bunkers design for radiation therapy medical facilities; analytical methods based on simplified equations and Monte Carlo methods. One of the main purposes of this work is to present the advantages of using Monte Carlo simulation to verify radiotherapy bunker shielding design. This methodology is more accurate and characterizes not only the fluence and dose three-dimensionally, but also the energy spectrum of particles generated by the LinAc. The other main purpose of the work is to analyze the importance of the generated photoneutrons when the LinAc emits high-energy photon beams (above 8 MeV), since numerous studies have found that these neutrons can expose the patient and clinical staff to non-negligible dose. The main novelty introduced by this work, is the creation of more realistic geometry simulation models to represent the radiotherapy facility by using CAD and meshes technologies which can be imported to MCNP6 Monte Carlo code. Results obtained using these bunker simulation models have been validated experimentally at the Hospital Universitari i Politècnic La Fe de Valencia facilities using two different neutron detectors; the neutron meter LB 6411 (designed between Berthold and Karlsruhe Research Center) and neutron detector model 42¿41L (Ludlum, Prescila). Neutron dose results obtained with Monte Carlo and those measured experimentally fit correctly, validating this analysis methodology. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bunker es_ES
dc.subject Neutrons es_ES
dc.subject Monte Carlo es_ES
dc.subject MCNP6 es_ES
dc.subject Dose es_ES
dc.subject Simulation es_ES
dc.subject Radiotherapy es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.nima.2018.09.083 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PPC%2F2015%2F046/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Juste Vidal, BJ.; Morató-Rafet, S.; Garcia, C.; Miró Herrero, R.; Verdú Martín, GJ. (2020). Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 954:1-5. https://doi.org/10.1016/j.nima.2018.09.083 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.nima.2018.09.083 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 954 es_ES
dc.relation.pasarela S\384046 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references Ongaro, C., Zanini, A., Nastasi, U., Ródenas, J., Ottaviano, G., & Manfredotti, C. (2000). Analysis of photoneutron spectra produced in medical accelerators. Physics in Medicine and Biology, 45(12), L55-L61. doi:10.1088/0031-9155/45/12/101 es_ES
dc.description.references International Commission on Radiological Protection (ICRP) 2007 ICRP, No. 103. The 2007 recommendations of the International Commission on Radiological, Protection. Report. es_ES
dc.description.references MCNP6 Users Manual - Code Version 6.1.1, LA-CP-14-00745, June 2014. es_ES
dc.description.references . SpaceClaim 3D Modeling Software, http://www.spaceclaim.com/en/default.aspx. es_ES
dc.description.references . Dassault Systèmes, 3D Experience Company, ABAQUS 6.14, ABAQUS/CAE User’s Guide, 2014. es_ES
dc.description.references L. Roger, The MCNP6 Book On Unstructured Mesh Geometry: User’s Guide, LA-UR- 11-05668 Rev. 8, MCNP6 code release to RSICC, Oak Ridge. es_ES
dc.description.references S. Morató, et al. Experimental validation of neutron activation simulation of a varian medical linear accelerator, in: Conf Proc IEEE Eng Med Biol Soc., 2016. es_ES
dc.description.references National Council on Radiation Protection and Measurements (NCRP) 2003. NCRP, No. 144. Radiation protection for particle accelerator, facilities. Report. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem