Mostrar el registro sencillo del ítem
dc.contributor.author | Juste Vidal, Belen Jeanine | es_ES |
dc.contributor.author | Morató-Rafet, Sergio | es_ES |
dc.contributor.author | Garcia, C. | es_ES |
dc.contributor.author | Miró Herrero, Rafael | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.date.accessioned | 2021-09-04T03:41:00Z | |
dc.date.available | 2021-09-04T03:41:00Z | |
dc.date.issued | 2020-02-21 | es_ES |
dc.identifier.issn | 0168-9002 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171419 | |
dc.description.abstract | [EN] Different methods exist to verify bunkers design for radiation therapy medical facilities; analytical methods based on simplified equations and Monte Carlo methods. One of the main purposes of this work is to present the advantages of using Monte Carlo simulation to verify radiotherapy bunker shielding design. This methodology is more accurate and characterizes not only the fluence and dose three-dimensionally, but also the energy spectrum of particles generated by the LinAc. The other main purpose of the work is to analyze the importance of the generated photoneutrons when the LinAc emits high-energy photon beams (above 8 MeV), since numerous studies have found that these neutrons can expose the patient and clinical staff to non-negligible dose. The main novelty introduced by this work, is the creation of more realistic geometry simulation models to represent the radiotherapy facility by using CAD and meshes technologies which can be imported to MCNP6 Monte Carlo code. Results obtained using these bunker simulation models have been validated experimentally at the Hospital Universitari i Politècnic La Fe de Valencia facilities using two different neutron detectors; the neutron meter LB 6411 (designed between Berthold and Karlsruhe Research Center) and neutron detector model 42¿41L (Ludlum, Prescila). Neutron dose results obtained with Monte Carlo and those measured experimentally fit correctly, validating this analysis methodology. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bunker | es_ES |
dc.subject | Neutrons | es_ES |
dc.subject | Monte Carlo | es_ES |
dc.subject | MCNP6 | es_ES |
dc.subject | Dose | es_ES |
dc.subject | Simulation | es_ES |
dc.subject | Radiotherapy | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.nima.2018.09.083 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PPC%2F2015%2F046/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Juste Vidal, BJ.; Morató-Rafet, S.; Garcia, C.; Miró Herrero, R.; Verdú Martín, GJ. (2020). Monte Carlo code application to the study of 3D neutrons distribution in a radiotherapy bunker and validation with experimental measurements. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 954:1-5. https://doi.org/10.1016/j.nima.2018.09.083 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.nima.2018.09.083 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 954 | es_ES |
dc.relation.pasarela | S\384046 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.description.references | Ongaro, C., Zanini, A., Nastasi, U., Ródenas, J., Ottaviano, G., & Manfredotti, C. (2000). Analysis of photoneutron spectra produced in medical accelerators. Physics in Medicine and Biology, 45(12), L55-L61. doi:10.1088/0031-9155/45/12/101 | es_ES |
dc.description.references | International Commission on Radiological Protection (ICRP) 2007 ICRP, No. 103. The 2007 recommendations of the International Commission on Radiological, Protection. Report. | es_ES |
dc.description.references | MCNP6 Users Manual - Code Version 6.1.1, LA-CP-14-00745, June 2014. | es_ES |
dc.description.references | . SpaceClaim 3D Modeling Software, http://www.spaceclaim.com/en/default.aspx. | es_ES |
dc.description.references | . Dassault Systèmes, 3D Experience Company, ABAQUS 6.14, ABAQUS/CAE User’s Guide, 2014. | es_ES |
dc.description.references | L. Roger, The MCNP6 Book On Unstructured Mesh Geometry: User’s Guide, LA-UR- 11-05668 Rev. 8, MCNP6 code release to RSICC, Oak Ridge. | es_ES |
dc.description.references | S. Morató, et al. Experimental validation of neutron activation simulation of a varian medical linear accelerator, in: Conf Proc IEEE Eng Med Biol Soc., 2016. | es_ES |
dc.description.references | National Council on Radiation Protection and Measurements (NCRP) 2003. NCRP, No. 144. Radiation protection for particle accelerator, facilities. Report. | es_ES |