- -

Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castro-López, Dora Luz es_ES
dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author Romero-Mendez, Ricardo es_ES
dc.date.accessioned 2021-09-04T03:41:11Z
dc.date.available 2021-09-04T03:41:11Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1547-1063 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171424
dc.description.abstract [EN] The objective was to explore variations of temperature distribution and coagulation zone size computed by a two-compartment radiofrequency ablation (RFA) model when including simultaneously reversible changes in the tissue electrical conductivity (sigma) due to temperature and irreversible changes due to thermal coagulation. Two-compartment (tumor and healthy tissue) models were built and simulated. Reversible change of sigma was modeled by a piecewise function characterized by increments of +1.5%/degrees C up to 100 degrees C, and a 100 times smaller value from 100 degrees C onwards. Irreversible changes of sigma were modeled using an Arrhenius model. We assumed that both tumor and healthy tissue had a different initial sigma value (as suggested by the experimental data in the literature) and tended towards a common value as thermal damage progressed (necrotized tissue). We modeled a constant impedance protocol based on 90 V pulses voltage and three tumor diameters (2, 3 and 4 cm). Computer simulations showed that the differences between both models were only 0.1 and 0.2 cm for axial and transverse diameters, respectively, and this small difference was reflected in the similar temperature distributions computed by both models. In view of the available experimental data on changes of electrical conductivity in tumors and healthy tissue during heating, our results suggest that irreversible changes in electrical conductivity do not have a significant impact on coagulation zone size in two-compartment RFA models. es_ES
dc.description.sponsorship This work was supported by the National Council of Science and Technology (CONACYT, Mexico) through a scholarship grant to Dora Luz Castro-Lopez, CVU registration No 446604; and by the Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programma Estatal de I+D+i Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21". es_ES
dc.language Inglés es_ES
dc.relation.ispartof Mathematical Biosciences and Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrical conductivity es_ES
dc.subject Irreversible changes es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Tumor ablation es_ES
dc.subject Two-compartment model es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/mbe.2020405 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//446604/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Castro-López, DL.; Trujillo Guillen, M.; Berjano, E.; Romero-Mendez, R. (2020). Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered. Mathematical Biosciences and Engineering. 17(6):7980-7993. https://doi.org/10.3934/mbe.2020405 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/mbe.2020405 es_ES
dc.description.upvformatpinicio 7980 es_ES
dc.description.upvformatpfin 7993 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 33378929 es_ES
dc.relation.pasarela S\421897 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references 2. D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr, J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size, <i>IEEE Trans. Biomed. Eng.</i>, 50 (2003), 493-500. es_ES
dc.description.references 4. Z. Liu, S. M. Lobo, S. Humphries, C. Horkan, S. A. Solazzo, A. U. Hines-Peralta, et al., Radiofrequency tumor ablation: insight into improved efficacy using computer modeling, <i>AJR Am. J. Roentgenol.</i>, 184 (2005), 1347-1352. es_ES
dc.description.references 5. S. M. Lobo, Z. J. Liu, N. C. Yu, S. Humphries, M. Ahmed, E. R. Cosman, et al., RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity, <i>Int. J. Hyperth.</i>, 21 (2005), 199-213. es_ES
dc.description.references 9. D. Haemmerich, D. J. Schutt, RF ablation at low frequencies for targeted tumor heating: In vitro and computational modeling results, <i>IEEE Trans. Biomed. Eng.</i>, 58 (2011), 404-410. es_ES
dc.description.references 17. M. Pop, A. Molckovsky, L. Chin, M. C. Kolios, M. A. Jewett, M. D. Sherar, Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy, <i>Phys. Med. Biol.</i>, 48 (2003), 2509-2525. es_ES
dc.description.references 18. U. Zurbuchen, C. Holmer, K. S. Lehmann, T. Stein, A. Roggan, C. Seifarth, et al., Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours, <i>Int. J. Hyperth.</i>, 26 (2010), 26-33. es_ES
dc.description.references 19. E. G. Macchi, M. Gallati, G. Braschi, E. Persi, Dielectric properties of RF heated ex vivo porcine liver tissue at 480&#8201;kHz: measurements and simulations, <i>J. Phys. D Appl. Phys.</i>, 47 (2014), 485401. es_ES
dc.description.references 21. E. Ewertowska, R. Quesada, A. Radosevic, A. Andaluz, X. Moll, F. G. Arnas, et al., A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode, <i>Int. J. Hyperth.</i>, 35 (2019), 194-204. es_ES
dc.description.references 30. M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. N. Prasad, Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus, <i>Nano Today</i>, 25 (2019), 135-155. es_ES
dc.description.references 33. A. Andreozzi, L. Brunese, M. Iasielllo, C. Tucci, G. P. Vanoli, Modeling heat transfer in tumors: A review of thermal therapies, <i>Ann. Biomed. Eng.</i>, 47 (2019), 676-693. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem