Mostrar el registro sencillo del ítem
dc.contributor.author | Castro-López, Dora Luz | es_ES |
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.contributor.author | Romero-Mendez, Ricardo | es_ES |
dc.date.accessioned | 2021-09-04T03:41:11Z | |
dc.date.available | 2021-09-04T03:41:11Z | |
dc.date.issued | 2020 | es_ES |
dc.identifier.issn | 1547-1063 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171424 | |
dc.description.abstract | [EN] The objective was to explore variations of temperature distribution and coagulation zone size computed by a two-compartment radiofrequency ablation (RFA) model when including simultaneously reversible changes in the tissue electrical conductivity (sigma) due to temperature and irreversible changes due to thermal coagulation. Two-compartment (tumor and healthy tissue) models were built and simulated. Reversible change of sigma was modeled by a piecewise function characterized by increments of +1.5%/degrees C up to 100 degrees C, and a 100 times smaller value from 100 degrees C onwards. Irreversible changes of sigma were modeled using an Arrhenius model. We assumed that both tumor and healthy tissue had a different initial sigma value (as suggested by the experimental data in the literature) and tended towards a common value as thermal damage progressed (necrotized tissue). We modeled a constant impedance protocol based on 90 V pulses voltage and three tumor diameters (2, 3 and 4 cm). Computer simulations showed that the differences between both models were only 0.1 and 0.2 cm for axial and transverse diameters, respectively, and this small difference was reflected in the similar temperature distributions computed by both models. In view of the available experimental data on changes of electrical conductivity in tumors and healthy tissue during heating, our results suggest that irreversible changes in electrical conductivity do not have a significant impact on coagulation zone size in two-compartment RFA models. | es_ES |
dc.description.sponsorship | This work was supported by the National Council of Science and Technology (CONACYT, Mexico) through a scholarship grant to Dora Luz Castro-Lopez, CVU registration No 446604; and by the Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programma Estatal de I+D+i Orientada a los Retos de la Sociedad", Grant No "RTI2018-094357-B-C21". | es_ES |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Mathematical Biosciences and Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electrical conductivity | es_ES |
dc.subject | Irreversible changes | es_ES |
dc.subject | Radiofrequency ablation | es_ES |
dc.subject | Tumor ablation | es_ES |
dc.subject | Two-compartment model | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/mbe.2020405 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//446604/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Castro-López, DL.; Trujillo Guillen, M.; Berjano, E.; Romero-Mendez, R. (2020). Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered. Mathematical Biosciences and Engineering. 17(6):7980-7993. https://doi.org/10.3934/mbe.2020405 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/mbe.2020405 | es_ES |
dc.description.upvformatpinicio | 7980 | es_ES |
dc.description.upvformatpfin | 7993 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 33378929 | es_ES |
dc.relation.pasarela | S\421897 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | 2. D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr, J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size, <i>IEEE Trans. Biomed. Eng.</i>, 50 (2003), 493-500. | es_ES |
dc.description.references | 4. Z. Liu, S. M. Lobo, S. Humphries, C. Horkan, S. A. Solazzo, A. U. Hines-Peralta, et al., Radiofrequency tumor ablation: insight into improved efficacy using computer modeling, <i>AJR Am. J. Roentgenol.</i>, 184 (2005), 1347-1352. | es_ES |
dc.description.references | 5. S. M. Lobo, Z. J. Liu, N. C. Yu, S. Humphries, M. Ahmed, E. R. Cosman, et al., RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity, <i>Int. J. Hyperth.</i>, 21 (2005), 199-213. | es_ES |
dc.description.references | 9. D. Haemmerich, D. J. Schutt, RF ablation at low frequencies for targeted tumor heating: In vitro and computational modeling results, <i>IEEE Trans. Biomed. Eng.</i>, 58 (2011), 404-410. | es_ES |
dc.description.references | 17. M. Pop, A. Molckovsky, L. Chin, M. C. Kolios, M. A. Jewett, M. D. Sherar, Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy, <i>Phys. Med. Biol.</i>, 48 (2003), 2509-2525. | es_ES |
dc.description.references | 18. U. Zurbuchen, C. Holmer, K. S. Lehmann, T. Stein, A. Roggan, C. Seifarth, et al., Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours, <i>Int. J. Hyperth.</i>, 26 (2010), 26-33. | es_ES |
dc.description.references | 19. E. G. Macchi, M. Gallati, G. Braschi, E. Persi, Dielectric properties of RF heated ex vivo porcine liver tissue at 480 kHz: measurements and simulations, <i>J. Phys. D Appl. Phys.</i>, 47 (2014), 485401. | es_ES |
dc.description.references | 21. E. Ewertowska, R. Quesada, A. Radosevic, A. Andaluz, X. Moll, F. G. Arnas, et al., A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode, <i>Int. J. Hyperth.</i>, 35 (2019), 194-204. | es_ES |
dc.description.references | 30. M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. N. Prasad, Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus, <i>Nano Today</i>, 25 (2019), 135-155. | es_ES |
dc.description.references | 33. A. Andreozzi, L. Brunese, M. Iasielllo, C. Tucci, G. P. Vanoli, Modeling heat transfer in tumors: A review of thermal therapies, <i>Ann. Biomed. Eng.</i>, 47 (2019), 676-693. | es_ES |