- -

Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture

Show full item record

Guillot-Ferriols, MT.; Rodriguez-Hernandez, J.; Correia, D.; Carabineiro, S.; Lanceros-Méndez, S.; Gómez Ribelles, JL.; Gallego Ferrer, G. (2020). Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Materials Science and Engineering C: Materials for Biological Applications (Online). 117:1-12. https://doi.org/10.1016/j.msec.2020.111281

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171684

Files in this item

Item Metadata

Title: Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture
Author: Guillot-Ferriols, María Teresa Rodriguez-Hernandez, Jose-Carlos Correia, D.M. Carabineiro, S.A.C. Lanceros-Méndez, S. Gómez Ribelles, José Luís Gallego Ferrer, Gloria
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Embargo end date: 2022-07-22
Abstract:
[EN] The use of piezoelectric materials in tissue engineering has grown considerably since inherent bone piezoelectricity was discovered. Combinations of piezoelectric polymers with magnetostrictive nanoparticles (MNP) can ...[+]
Subjects: Poly(vinylidene) fluoride , Non-solvent induced phase separation , Layer-by-layer , Collagen , Mesenchymal stem cells , Piezoelectricity
Copyrigths: Embargado
Source:
Materials Science and Engineering C: Materials for Biological Applications (Online). (eissn: 1873-0191 )
DOI: 10.1016/j.msec.2020.111281
Publisher:
Elsevier BV
Publisher version: https://doi.org/10.1016/j.msec.2020.111281
Project ID:
FCT/UIDB/50006/2020
...[+]
FCT/UIDB/50006/2020
info:eu-repo/grantAgreement/MSC//CB06%2F01%2F1026/ES/Desarrollo e implementación de nuevas tecnologías en biomedicina 106/
Gobierno Vasco/Eusko Jaurlaritza/PIBA-2018-06
info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C43/ES/DESARROLLO DE ANDAMIAJES BIOMIMETICOS ACTIVOS PARA EL ESTUDIO DE MICROENTORNO DE TUMOR EN OSTEOSARCOMA/
AEI/BES-2017-080398
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE./
[-]
Thanks:
This work has been funded by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the PID2019-106099RB-C41/AEI/10.13039/501100011033 and PID2019-106099RB-C43/AEI/10.13039/501100011033 ...[+]
Type: Artículo

References

Jacob, J., More, N., Kalia, K., & Kapusetti, G. (2018). Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and Regeneration, 38(1). doi:10.1186/s41232-018-0059-8

Fukada, E., & Yasuda, I. (1957). On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan, 12(10), 1158-1162. doi:10.1143/jpsj.12.1158

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 [+]
Jacob, J., More, N., Kalia, K., & Kapusetti, G. (2018). Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and Regeneration, 38(1). doi:10.1186/s41232-018-0059-8

Fukada, E., & Yasuda, I. (1957). On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan, 12(10), 1158-1162. doi:10.1143/jpsj.12.1158

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006

Gregorio, R. (2006). Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 100(4), 3272-3279. doi:10.1002/app.23137

Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527

Gregorio, R., & Borges, D. S. (2008). Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, 49(18), 4009-4016. doi:10.1016/j.polymer.2008.07.010

Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052

Buonomenna, M. G., Macchi, P., Davoli, M., & Drioli, E. (2007). Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 43(4), 1557-1572. doi:10.1016/j.eurpolymj.2006.12.033

Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157

Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., & Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1-2), 1-27. doi:10.1016/j.memsci.2011.03.014

Abzan, N., Kharaziha, M., & Labbaf, S. (2019). Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Materials & Design, 167, 107636. doi:10.1016/j.matdes.2019.107636

Young, T.-H., Chang, H.-H., Lin, D.-J., & Cheng, L.-P. (2010). Surface modification of microporous PVDF membranes for neuron culture. Journal of Membrane Science, 350(1-2), 32-41. doi:10.1016/j.memsci.2009.12.009

Gonçalves, R., Martins, P., Correia, D. M., Sencadas, V., Vilas, J. L., León, L. M., … Lanceros-Méndez, S. (2015). Development of magnetoelectric CoFe2O4 /poly(vinylidene fluoride) microspheres. RSC Advances, 5(45), 35852-35857. doi:10.1039/c5ra04409j

Fernandes, M. M., Correia, D. M., Ribeiro, C., Castro, N., Correia, V., & Lanceros-Mendez, S. (2019). Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 11(48), 45265-45275. doi:10.1021/acsami.9b14001

Hermenegildo, B., Ribeiro, C., Pérez-Álvarez, L., Vilas, J. L., Learmonth, D. A., Sousa, R. A., … Lanceros-Méndez, S. (2019). Hydrogel-based magnetoelectric microenvironments for tissue stimulation. Colloids and Surfaces B: Biointerfaces, 181, 1041-1047. doi:10.1016/j.colsurfb.2019.06.023

Gonçalves, R., Martins, P., Moya, X., Ghidini, M., Sencadas, V., Botelho, G., … Lanceros-Mendez, S. (2015). Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale, 7(17), 8058-8061. doi:10.1039/c5nr00453e

Silva, J. M., Reis, R. L., & Mano, J. F. (2016). Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. Small, 12(32), 4308-4342. doi:10.1002/smll.201601355

Costa, R. R., & Mano, J. F. (2014). Polyelectrolyte multilayered assemblies in biomedical technologies. Chemical Society Reviews, 43(10), 3453. doi:10.1039/c3cs60393h

Castilla-Casadiego, D. A., Pinzon-Herrera, L., Perez-Perez, M., Quiñones-Colón, B. A., Suleiman, D., & Almodovar, J. (2018). Simultaneous characterization of physical, chemical, and thermal properties of polymeric multilayers using infrared spectroscopic ellipsometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553, 155-168. doi:10.1016/j.colsurfa.2018.05.052

Mhanna, R. F., Vörös, J., & Zenobi-Wong, M. (2011). Layer-by-Layer Films Made from Extracellular Matrix Macromolecules on Silicone Substrates. Biomacromolecules, 12(3), 609-616. doi:10.1021/bm1012772

Billings, P. C., & Pacifici, M. (2015). Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connective Tissue Research, 56(4), 272-280. doi:10.3109/03008207.2015.1045066

Chen, J., Huang, N., Li, Q., Chu, C. H., Li, J., & Maitz, M. F. (2016). The effect of electrostatic heparin/collagen layer-by-layer coating degradation on the biocompatibility. Applied Surface Science, 362, 281-289. doi:10.1016/j.apsusc.2015.11.227

Zhang, K., Huang, D., Yan, Z., & Wang, C. (2017). Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering. Journal of Biomedical Materials Research Part A, 105(7), 1900-1910. doi:10.1002/jbm.a.36053

Ferreira, A. M., Gentile, P., Toumpaniari, S., Ciardelli, G., & Birch, M. A. (2016). Impact of Collagen/Heparin Multilayers for Regulating Bone Cellular Functions. ACS Applied Materials & Interfaces, 8(44), 29923-29932. doi:10.1021/acsami.6b09241

Castilla-Casadiego, D. A., García, J. R., García, A. J., & Almodovar, J. (2019). Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon Gamma. ACS Biomaterials Science & Engineering, 5(6), 2793-2803. doi:10.1021/acsbiomaterials.9b00008

Martins, P., Gonçalves, R., Lanceros-Mendez, S., Lasheras, A., Gutiérrez, J., & Barandiarán, J. M. (2014). Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites. Applied Surface Science, 313, 215-219. doi:10.1016/j.apsusc.2014.05.187

Gamboa-Martínez, T. C., Luque-Guillén, V., González-García, C., Gómez Ribelles, J. L., & Gallego-Ferrer, G. (2014). Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties. Journal of Biomedical Materials Research Part A, 103(2), 614-621. doi:10.1002/jbm.a.35210

Gregorio, Jr., R., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5), 859-870. doi:10.1002/polb.1994.090320509

Martins, P., Costa, C. M., & Lanceros-Mendez, S. (2010). Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Applied Physics A, 103(1), 233-237. doi:10.1007/s00339-010-6003-7

Qi, L., Knapton, E. K., Zhang, X., Zhang, T., Gu, C., & Zhao, Y. (2017). Pre-culture Sudan Black B treatment suppresses autofluorescence signals emitted from polymer tissue scaffolds. Scientific Reports, 7(1). doi:10.1038/s41598-017-08723-2

Young, T.-H., Cheng, L.-P., Lin, D.-J., Fane, L., & Chuang, W.-Y. (1999). Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer, 40(19), 5315-5323. doi:10.1016/s0032-3861(98)00747-2

Cheng, L.-P. (1999). Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/PVDF and Water/DMF/PVDF Systems. Macromolecules, 32(20), 6668-6674. doi:10.1021/ma990418l

Supriya, S., Kumar, L., & Kar, M. (2018). Optimization of dielectric properties of PVDF-CFO nanocomposites. Polymer Composites, 40(3), 1239-1250. doi:10.1002/pc.24840

Lin, D.-J., Beltsios, K., Young, T.-H., Jeng, Y.-S., & Cheng, L.-P. (2006). Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science, 274(1-2), 64-72. doi:10.1016/j.memsci.2005.07.043

Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382-15389. doi:10.1039/c7ra01267e

Boccaccio, T., Bottino, A., Capannelli, G., & Piaggio, P. (2002). Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science, 210(2), 315-329. doi:10.1016/s0376-7388(02)00407-6

Liu, J., Lu, X., & Wu, C. (2013). Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes. Membranes, 3(4), 389-405. doi:10.3390/membranes3040389

ZHANG, M., ZHANG, A., ZHU, B., DU, C., & XU, Y. (2008). Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process. Journal of Membrane Science, 319(1-2), 169-175. doi:10.1016/j.memsci.2008.03.029

Xiao, L., Davenport, D. M., Ormsbee, L., & Bhattacharyya, D. (2015). Polymerization and Functionalization of Membrane Pores for Water Related Applications. Industrial & Engineering Chemistry Research, 54(16), 4174-4182. doi:10.1021/ie504149t

Duca, M. D., Plosceanu, C. L., & Pop, T. (1998). Effect of X-rays on poly(vinylidene fluoride) in X-ray photoelectron spectroscopy. Journal of Applied Polymer Science, 67(13), 2125-2129. doi:10.1002/(sici)1097-4628(19980328)67:13<2125::aid-app2>3.0.co;2-g

Correia, D. M., Ribeiro, C., Sencadas, V., Botelho, G., Carabineiro, S. A. C., Ribelles, J. L. G., & Lanceros-Méndez, S. (2015). Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Progress in Organic Coatings, 85, 151-158. doi:10.1016/j.porgcoat.2015.03.019

Kehrer, M., Duchoslav, J., Hinterreiter, A., Cobet, M., Mehic, A., Stehrer, T., & Stifter, D. (2019). XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Processes and Polymers, 16(4), 1800160. doi:10.1002/ppap.201800160

Morales-Román, R. M., Guillot-Ferriols, M., Roig-Pérez, L., Lanceros-Mendez, S., Gallego-Ferrer, G., & Gómez Ribelles, J. L. (2019). Freeze-extraction microporous electroactive supports for cell culture. European Polymer Journal, 119, 531-540. doi:10.1016/j.eurpolymj.2019.07.011

Camacho, N. P., West, P., Torzilli, P. A., & Mendelsohn, R. (2000). FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers, 62(1), 1-8. doi:10.1002/1097-0282(2001)62:1<1::aid-bip10>3.0.co;2-o

Ribeiro, C., Panadero, J. A., Sencadas, V., Lanceros-Méndez, S., Tamaño, M. N., Moratal, D., … Gómez Ribelles, J. L. (2012). Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials, 7(3), 035004. doi:10.1088/1748-6041/7/3/035004

Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V. P., & Lanceros‐Méndez, S. (2014). Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research Part A, 103(6), 2172-2175. doi:10.1002/jbm.a.35368

Sobreiro-Almeida, R., Tamaño-Machiavello, M., Carvalho, E., Cordón, L., Doria, S., Senent, L., … Sempere, A. (2017). Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences, 18(11), 2391. doi:10.3390/ijms18112391

Moise, S., Céspedes, E., Soukup, D., Byrne, J. M., El Haj, A. J., & Telling, N. D. (2017). The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Scientific Reports, 7(1). doi:10.1038/srep39922

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record