- -

Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links

Mostrar el registro completo del ítem

Vallejo-Castro, L.; Ortega Tamarit, B.; Bohata, J.; Zvanovec, S.; Almenar Terre, V. (2020). Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links. Optical Fiber Technology. 54:1-7. https://doi.org/10.1016/j.yofte.2019.102085

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171686

Ficheros en el ítem

Metadatos del ítem

Título: Photonic multiple millimeter wave signal generation and distribution overreconfigurable hybrid SSMF/FSO links
Autor: Vallejo-Castro, Luis Ortega Tamarit, Beatriz Bohata, Jan Zvanovec, Stanislav Almenar Terre, Vicenç
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] Microwave photonics provides attractive solutions for millimeter wave (mmW) signal generation. In this paper, we demonstrate photonically generated multiple mmW signals transmission over a wavelength division multiplexed ...[+]
Palabras clave: Microwave photonics , Millimeter-waves , External modulation , Free-space optics , Wavelength division multiplexing
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Optical Fiber Technology. (issn: 1068-5200 )
DOI: 10.1016/j.yofte.2019.102085
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.yofte.2019.102085
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F103/ES/TECNOLOGIAS Y APLICACIONES FUTURAS DE LA FOTONICA DE MICROONDAS (FUTURE MWP TECHNOLOGIES & APPLICATIONS)/
Agradecimientos:
This work has been funded by the Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics Technologies and Applications and MEYS INTER-COST project LTC18008 (within COST action CA 16220).
Tipo: Artículo

References

Waterhouse, R., & Novack, D. (2015). Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems. IEEE Microwave Magazine, 16(8), 84-92. doi:10.1109/mmm.2015.2441593

Hirata, A., Takahashi, H., Yamaguchi, R., Kosugi, T., Murata, K., Nagatsuma, T., … Kado, Y. (2008). Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies. Journal of Lightwave Technology, 26(15), 2338-2344. doi:10.1109/jlt.2008.925641

Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for Mobile Networks—A Technology Overview. IEEE Communications Surveys & Tutorials, 17(1), 405-426. doi:10.1109/comst.2014.2355255 [+]
Waterhouse, R., & Novack, D. (2015). Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems. IEEE Microwave Magazine, 16(8), 84-92. doi:10.1109/mmm.2015.2441593

Hirata, A., Takahashi, H., Yamaguchi, R., Kosugi, T., Murata, K., Nagatsuma, T., … Kado, Y. (2008). Transmission Characteristics of 120-GHz-Band Wireless Link Using Radio-on-Fiber Technologies. Journal of Lightwave Technology, 26(15), 2338-2344. doi:10.1109/jlt.2008.925641

Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., & Dittmann, L. (2015). Cloud RAN for Mobile Networks—A Technology Overview. IEEE Communications Surveys & Tutorials, 17(1), 405-426. doi:10.1109/comst.2014.2355255

Dat, P. T., Kanno, A., & Kawanishi, T. (2015). Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wireless Communications, 22(5), 67-75. doi:10.1109/mwc.2015.7306539

Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Ka-Lun Lee, Yizhuo Yang, … Waterhouse, R. (2010). Fiber-Wireless Networks and Subsystem Technologies. Journal of Lightwave Technology, 28(4), 390-405. doi:10.1109/jlt.2009.2031423

Beas, J., Castanon, G., Aldaya, I., Aragon-Zavala, A., & Campuzano, G. (2013). Millimeter-Wave Frequency Radio over Fiber Systems: A Survey. IEEE Communications Surveys & Tutorials, 15(4), 1593-1619. doi:10.1109/surv.2013.013013.00135

Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551

Doi, Y., Fukushima, S., Ohno, T., & Yoshino, K. (2001). Frequency stabilization of millimeter-wave subcarrier using laser heterodyne source and optical delay line. IEEE Photonics Technology Letters, 13(9), 1002-1004. doi:10.1109/68.942674

Hurtado, A., Henning, I. D., Adams, M. J., & Lester, L. F. (2013). Generation of Tunable Millimeter-Wave and THz Signals With an Optically Injected Quantum Dot Distributed Feedback Laser. IEEE Photonics Journal, 5(4), 5900107-5900107. doi:10.1109/jphot.2013.2267535

Liu, J., Chien, H.-C., Fan, S.-H., Chen, B., Yu, J., He, S., & Chang, G.-K. (2011). Efficient Optical Millimeter-Wave Generation Using a Frequency-Tripling Fabry–Pérot Laser With Sideband Injection and Synchronization. IEEE Photonics Technology Letters, 23(18), 1325-1327. doi:10.1109/lpt.2011.2159834

Nakasyotani, T., Toda, H., Kuri, T., & Kitayama, K. (2006). Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology, 24(1), 404-410. doi:10.1109/jlt.2005.859854

L. Xu, C. Li, S.M.G. Lo, H.K. Tsang, Millimeter wave generation using four wave mixing in silicon waveguide, OECC 2010 Technical Digest, pp. 860-861, Jul. 2010.

Seo, Y.-K., Choi, C.-S., & Choi, W.-Y. (2002). All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers. IEEE Photonics Technology Letters, 14(10), 1448-1450. doi:10.1109/lpt.2002.801823

T. Kanesa, F. Maskuriy, M. Hafiz, R. Mohamad, S.M. Mitani, H.M. Hizan, A.I.A. Rahim, P.A. Haigh, S. Rajbhandari, G. Chang, Dual pump brillouin laser for RoF millimeterwave carrier generation with tunable resolution, TENCON 2015 – 2015 IEEE Region 10 Conference, pp. 1–6, Nov. 2015.

Zhang, L., Zhu, M., Ye, C., Fan, S.-H., Liu, C., Hu, X., … Chang, G.-K. (2013). Generation and transmission of multiband and multi-gigabit 60-GHz MMW signals in an RoF system with frequency quintupling technique. Optics Express, 21(8), 9899. doi:10.1364/oe.21.009899

Zhang, J., Wang, J., Xu, Y., Xu, M., Lu, F., Cheng, L., … Chang, G. (2016). Fiber–wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique. Optics Letters, 41(9), 1909. doi:10.1364/ol.41.001909

Zhang, R., Lu, F., Xu, M., Liu, S., Peng, P.-C., Shen, S., … Chang, G.-K. (2018). An Ultra-Reliable MMW/FSO A-RoF System Based on Coordinated Mapping and Combining Technique for 5G and Beyond Mobile Fronthaul. Journal of Lightwave Technology, 36(20), 4952-4959. doi:10.1109/jlt.2018.2866767

Bohata, J., Komanec, M., Spáčil, J., Ghassemlooy, Z., Zvánovec, S., & Slavík, R. (2018). 24–26  GHz radio-over-fiber and free-space optics for fifth-generation systems. Optics Letters, 43(5), 1035. doi:10.1364/ol.43.001035

Chun-Ting Lin, Chen, J. J., Sheng-Peng Dai, Peng-Chun Peng, & Sien Chi. (2008). Impact of Nonlinear Transfer Function and Imperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation. Journal of Lightwave Technology, 26(15), 2449-2459. doi:10.1109/jlt.2008.927160

Ning, G., Shum, P., & Zhou, J. (2007). Dispersion effect and compensation in optical-carrier-suppressed modulation transport systems. Journal of the Optical Society of America A, 24(11), 3432. doi:10.1364/josaa.24.003432

Qi, G., Yao, J., Seregelyi, J., Paquet, S., Belisle, C., Zhang, X., … Kashyap, R. (2006). Phase-Noise Analysis of Optically Generated Millimeter-Wave Signals With External Optical Modulation Techniques. Journal of Lightwave Technology, 24(12), 4861-4875. doi:10.1109/jlt.2006.884990

Lin Xu, Chao Li, Chow, C. W., & Hon Ki Tsang. (2009). Optical mm-Wave Signal Generation by Frequency Quadrupling Using an Optical Modulator and a Silicon Microresonator Filter. IEEE Photonics Technology Letters, 21(4), 209-211. doi:10.1109/lpt.2008.2010056

International Telecommunication Union, Forward error correction for high bit-rate DWDM submarine systems, ITU-T Recommendation G.975.1, 2004.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem