- -

Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination

Mostrar el registro completo del ítem

Calabuig, JM.; García-Raffi, LM.; García-Valiente, A.; Sánchez Pérez, EA. (2020). Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination. Mathematics. 8(8):1-25. https://doi.org/10.3390/math8081260

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172000

Ficheros en el ítem

Metadatos del ítem

Título: Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
Autor: Calabuig, J. M. García-Raffi, L. M. García-Valiente, Albert Sánchez Pérez, Enrique Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to ...[+]
Palabras clave: Kaplan-Meier , Survival , Quadratic , Optimization , Epidemic , Model
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8081260
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8081260
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/
Agradecimientos:
This research was funded by Ministerio de Ciencia, Innovacion y Universidades: MTM2016-77054-C2-1-P and Generalitat Valenciana: Catedra de Transparencia y Gestion de Datos (U.P.V.). The authors would like to thank the ...[+]
Tipo: Artículo

References

Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., … Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 296(2), E32-E40. doi:10.1148/radiol.2020200642

Chen, D., Xu, W., Lei, Z., Huang, Z., Liu, J., Gao, Z., & Peng, L. (2020). Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. International Journal of Infectious Diseases, 93, 297-299. doi:10.1016/j.ijid.2020.03.003

Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452 [+]
Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., … Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 296(2), E32-E40. doi:10.1148/radiol.2020200642

Chen, D., Xu, W., Lei, Z., Huang, Z., Liu, J., Gao, Z., & Peng, L. (2020). Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. International Journal of Infectious Diseases, 93, 297-299. doi:10.1016/j.ijid.2020.03.003

Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452

Kenah, E. (2010). Contact intervals, survival analysis of epidemic data, and estimation of R0. Biostatistics, 12(3), 548-566. doi:10.1093/biostatistics/kxq068

Kenah, E. (2012). Non-parametric survival analysis of infectious disease data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(2), 277-303. doi:10.1111/j.1467-9868.2012.01042.x

Ogłuszka, M., Orzechowska, M., Jędroszka, D., Witas, P., & Bednarek, A. K. (2019). Evaluate Cutpoints: Adaptable continuous data distribution system for determining survival in Kaplan-Meier estimator. Computer Methods and Programs in Biomedicine, 177, 133-139. doi:10.1016/j.cmpb.2019.05.023

Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907

Silal, S. P., Little, F., Barnes, K. I., & White, L. J. (2016). Sensitivity to model structure: a comparison of compartmental models in epidemiology. Health Systems, 5(3), 178-191. doi:10.1057/hs.2015.2

Kamvar, Z. N., Cai, J., Pulliam, J. R. C., Schumacher, J., & Jombart, T. (2019). Epidemic curves made easy using the R package incidence. F1000Research, 8, 139. doi:10.12688/f1000research.18002.1

Lectures on Mathematical Modelling of Biological Systemshttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.8665&rep=rep1&type=pdf

Keeling, M. J., & Danon, L. (2009). Mathematical modelling of infectious diseases. British Medical Bulletin, 92(1), 33-42. doi:10.1093/bmb/ldp038

Brown, G. D., Oleson, J. J., & Porter, A. T. (2015). An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks. Biometrics, 72(2), 335-343. doi:10.1111/biom.12432

Huppert, A., & Katriel, G. (2013). Mathematical modelling and prediction in infectious disease epidemiology. Clinical Microbiology and Infection, 19(11), 999-1005. doi:10.1111/1469-0691.12308

Paul, M. (2013). Foreseeing the future in infectious diseases: can we? Clinical Microbiology and Infection, 19(11), 991-992. doi:10.1111/1469-0691.12300

Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., … Chowell, G. (2020). Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine, 9(2), 596. doi:10.3390/jcm9020596

Package ‘GA’-CRAN-R Projecthttps://luca-scr.github.io/GA/

Scrucca, L. (2013). GA: A Package for Genetic Algorithms inR. Journal of Statistical Software, 53(4). doi:10.18637/jss.v053.i04

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem