- -

Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.contributor.author García-Valiente, Albert es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2021-09-10T03:30:56Z
dc.date.available 2021-09-10T03:30:56Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172000
dc.description.abstract [EN] We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curvePof the virus. Together with the function of the newly infected individualsI, this model allows us to predict the evolution of the resulting epidemic process in terms of the numberEof the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation ofEas the convolution ofIandP. It allows introducing information about latent patients-patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation ofPusing real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model. es_ES
dc.description.sponsorship This research was funded by Ministerio de Ciencia, Innovacion y Universidades: MTM2016-77054-C2-1-P and Generalitat Valenciana: Catedra de Transparencia y Gestion de Datos (U.P.V.). The authors would like to thank the referees for their valuable comments which helped to improve the manuscript. The author gratefully acknowledge the support of Cátedra de Transparencia y Gestión de Datos, Universitat Politècnica de València y Generalitat Valenciana, Spain. The last author gratefully acknowledges the support of the Ministerio de Ciencia, Innovación y Universidades (Spain) and FEDER under grant MTM2016-77054-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Kaplan-Meier es_ES
dc.subject Survival es_ES
dc.subject Quadratic es_ES
dc.subject Optimization es_ES
dc.subject Epidemic es_ES
dc.subject Model es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8081260 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calabuig, JM.; García-Raffi, LM.; García-Valiente, A.; Sánchez Pérez, EA. (2020). Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination. Mathematics. 8(8):1-25. https://doi.org/10.3390/math8081260 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8081260 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\424061 es_ES
dc.contributor.funder MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD es_ES
dc.contributor.funder Cátedra de Transparencia y Gestión de datos, Universitat Politècnica de València es_ES
dc.description.references Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., … Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 296(2), E32-E40. doi:10.1148/radiol.2020200642 es_ES
dc.description.references Chen, D., Xu, W., Lei, Z., Huang, Z., Liu, J., Gao, Z., & Peng, L. (2020). Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. International Journal of Infectious Diseases, 93, 297-299. doi:10.1016/j.ijid.2020.03.003 es_ES
dc.description.references Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53(282), 457-481. doi:10.1080/01621459.1958.10501452 es_ES
dc.description.references Kenah, E. (2010). Contact intervals, survival analysis of epidemic data, and estimation of R0. Biostatistics, 12(3), 548-566. doi:10.1093/biostatistics/kxq068 es_ES
dc.description.references Kenah, E. (2012). Non-parametric survival analysis of infectious disease data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(2), 277-303. doi:10.1111/j.1467-9868.2012.01042.x es_ES
dc.description.references Ogłuszka, M., Orzechowska, M., Jędroszka, D., Witas, P., & Bednarek, A. K. (2019). Evaluate Cutpoints: Adaptable continuous data distribution system for determining survival in Kaplan-Meier estimator. Computer Methods and Programs in Biomedicine, 177, 133-139. doi:10.1016/j.cmpb.2019.05.023 es_ES
dc.description.references Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 es_ES
dc.description.references Silal, S. P., Little, F., Barnes, K. I., & White, L. J. (2016). Sensitivity to model structure: a comparison of compartmental models in epidemiology. Health Systems, 5(3), 178-191. doi:10.1057/hs.2015.2 es_ES
dc.description.references Kamvar, Z. N., Cai, J., Pulliam, J. R. C., Schumacher, J., & Jombart, T. (2019). Epidemic curves made easy using the R package incidence. F1000Research, 8, 139. doi:10.12688/f1000research.18002.1 es_ES
dc.description.references Lectures on Mathematical Modelling of Biological Systemshttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.8665&rep=rep1&type=pdf es_ES
dc.description.references Keeling, M. J., & Danon, L. (2009). Mathematical modelling of infectious diseases. British Medical Bulletin, 92(1), 33-42. doi:10.1093/bmb/ldp038 es_ES
dc.description.references Brown, G. D., Oleson, J. J., & Porter, A. T. (2015). An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks. Biometrics, 72(2), 335-343. doi:10.1111/biom.12432 es_ES
dc.description.references Huppert, A., & Katriel, G. (2013). Mathematical modelling and prediction in infectious disease epidemiology. Clinical Microbiology and Infection, 19(11), 999-1005. doi:10.1111/1469-0691.12308 es_ES
dc.description.references Paul, M. (2013). Foreseeing the future in infectious diseases: can we? Clinical Microbiology and Infection, 19(11), 991-992. doi:10.1111/1469-0691.12300 es_ES
dc.description.references Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., … Chowell, G. (2020). Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine, 9(2), 596. doi:10.3390/jcm9020596 es_ES
dc.description.references Package ‘GA’-CRAN-R Projecthttps://luca-scr.github.io/GA/ es_ES
dc.description.references Scrucca, L. (2013). GA: A Package for Genetic Algorithms inR. Journal of Statistical Software, 53(4). doi:10.18637/jss.v053.i04 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem