dc.contributor.author |
Falcó, Antonio
|
es_ES |
dc.contributor.author |
Hilario, Lucía
|
es_ES |
dc.contributor.author |
Montés, Nicolás
|
es_ES |
dc.contributor.author |
Mora, Marta C.
|
es_ES |
dc.contributor.author |
Nadal, Enrique
|
es_ES |
dc.date.accessioned |
2021-09-10T03:31:00Z |
|
dc.date.available |
2021-09-10T03:31:00Z |
|
dc.date.issued |
2020-12 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/172002 |
|
dc.description.abstract |
[EN] A necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: real-time collision avoidance. This kind of problem has been studied by different researchers suggesting different techniques to solve the problem of how to design a trajectory of a mobile robot avoiding collisions with dynamic obstacles. One of these algorithms is the artificial potential field (APF), proposed by O. Khatib in 1986, where a set of an artificial potential field is generated to attract the mobile robot to the goal and to repel the obstacles. This is one of the best options to obtain the trajectory of a mobile robot in real-time (RT). However, the main disadvantage is the presence of deadlocks. The mobile robot can be trapped in one of the local minima. In 1988, J.F. Canny suggested an alternative solution using harmonic functions satisfying the Laplace partial differential equation. When this article appeared, it was nearly impossible to apply this algorithm to RT applications. Years later a novel technique called proper generalized decomposition (PGD) appeared to solve partial differential equations, including parameters, the main appeal being that the solution is obtained once in life, including all the possible parameters. Our previous work, published in 2018, was the first approach to study the possibility of applying the PGD to designing a path planning alternative to the algorithms that nowadays exist. The target of this work is to improve our first approach while including dynamic obstacles as extra parameters. |
es_ES |
dc.description.sponsorship |
This research was funded by the GVA/2019/124 grant from Generalitat Valenciana and by the RTI2018-093521-B-C32 grant from the Ministerio de Ciencia, Innovacion y Universidades. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Mathematics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Proper generalized decomposition |
es_ES |
dc.subject |
Motion planning |
es_ES |
dc.subject |
Artificial potential fields |
es_ES |
dc.subject |
Harmonic
functions |
es_ES |
dc.subject |
Laplace equation |
es_ES |
dc.subject |
Dynamic environment |
es_ES |
dc.subject.classification |
INGENIERIA DE SISTEMAS Y AUTOMATICA |
es_ES |
dc.subject.classification |
INGENIERIA MECANICA |
es_ES |
dc.title |
A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/math8122245 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//GV%2F2019%2F124/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093521-B-C32/ES/GEOMETRIA Y TOPOLOGIA DE LOS MODELOS DE ORDEN REDUCIDO: APLICACIONES EN ARQUITECTURA/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada |
es_ES |
dc.description.bibliographicCitation |
Falcó, A.; Hilario, L.; Montés, N.; Mora, MC.; Nadal, E. (2020). A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics. 8(12):1-11. https://doi.org/10.3390/math8122245 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/math8122245 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
11 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
8 |
es_ES |
dc.description.issue |
12 |
es_ES |
dc.identifier.eissn |
2227-7390 |
es_ES |
dc.relation.pasarela |
S\424376 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841 |
es_ES |
dc.description.references |
Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777 |
es_ES |
dc.description.references |
Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106 |
es_ES |
dc.description.references |
Kim, J.-O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8(3), 338-349. doi:10.1109/70.143352 |
es_ES |
dc.description.references |
Connolly, C. I., & Grupen, R. A. (1993). The applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931-946. doi:10.1002/rob.4620100704 |
es_ES |
dc.description.references |
Garrido, S., Moreno, L., Blanco, D., & Martín Monar, F. (2009). Robotic Motion Using Harmonic Functions and Finite Elements. Journal of Intelligent and Robotic Systems, 59(1), 57-73. doi:10.1007/s10846-009-9381-3 |
es_ES |
dc.description.references |
Bai, X., Yan, W., Cao, M., & Xue, D. (2019). Distributed multi‐vehicle task assignment in a time‐invariant drift field with obstacles. IET Control Theory & Applications, 13(17), 2886-2893. doi:10.1049/iet-cta.2018.6125 |
es_ES |
dc.description.references |
Bai, X., Yan, W., Ge, S. S., & Cao, M. (2018). An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Information Sciences, 453, 227-238. doi:10.1016/j.ins.2018.04.044 |
es_ES |
dc.description.references |
Falcó, A., & Nouy, A. (2011). Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numerische Mathematik, 121(3), 503-530. doi:10.1007/s00211-011-0437-5 |
es_ES |
dc.description.references |
Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x |
es_ES |
dc.description.references |
Falcó, A., Montés, N., Chinesta, F., Hilario, L., & Mora, M. C. (2018). On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems. Journal of Computational and Applied Mathematics, 330, 1093-1107. doi:10.1016/j.cam.2017.08.007 |
es_ES |
dc.description.references |
Domenech, L., Falcó, A., García, V., & Sánchez, F. (2016). Towards a 2.5D geometric model in mold filling simulation. Journal of Computational and Applied Mathematics, 291, 183-196. doi:10.1016/j.cam.2015.02.043 |
es_ES |
dc.description.references |
Falcó, A., & Nouy, A. (2011). A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. Journal of Mathematical Analysis and Applications, 376(2), 469-480. doi:10.1016/j.jmaa.2010.12.003 |
es_ES |
dc.description.references |
Falcó, A., & Hackbusch, W. (2012). On Minimal Subspaces in Tensor Representations. Foundations of Computational Mathematics, 12(6), 765-803. doi:10.1007/s10208-012-9136-6 |
es_ES |
dc.description.references |
Canuto, C., & Urban, K. (2005). Adaptive Optimization of Convex Functionals in Banach Spaces. SIAM Journal on Numerical Analysis, 42(5), 2043-2075. doi:10.1137/s0036142903429730 |
es_ES |
dc.description.references |
Ammar, A., Chinesta, F., & Falcó, A. (2010). On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems. Archives of Computational Methods in Engineering, 17(4), 473-486. doi:10.1007/s11831-010-9048-z |
es_ES |