- -

A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Falcó, Antonio es_ES
dc.contributor.author Hilario, Lucía es_ES
dc.contributor.author Montés, Nicolás es_ES
dc.contributor.author Mora, Marta C. es_ES
dc.contributor.author Nadal, Enrique es_ES
dc.date.accessioned 2021-09-10T03:31:00Z
dc.date.available 2021-09-10T03:31:00Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172002
dc.description.abstract [EN] A necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: real-time collision avoidance. This kind of problem has been studied by different researchers suggesting different techniques to solve the problem of how to design a trajectory of a mobile robot avoiding collisions with dynamic obstacles. One of these algorithms is the artificial potential field (APF), proposed by O. Khatib in 1986, where a set of an artificial potential field is generated to attract the mobile robot to the goal and to repel the obstacles. This is one of the best options to obtain the trajectory of a mobile robot in real-time (RT). However, the main disadvantage is the presence of deadlocks. The mobile robot can be trapped in one of the local minima. In 1988, J.F. Canny suggested an alternative solution using harmonic functions satisfying the Laplace partial differential equation. When this article appeared, it was nearly impossible to apply this algorithm to RT applications. Years later a novel technique called proper generalized decomposition (PGD) appeared to solve partial differential equations, including parameters, the main appeal being that the solution is obtained once in life, including all the possible parameters. Our previous work, published in 2018, was the first approach to study the possibility of applying the PGD to designing a path planning alternative to the algorithms that nowadays exist. The target of this work is to improve our first approach while including dynamic obstacles as extra parameters. es_ES
dc.description.sponsorship This research was funded by the GVA/2019/124 grant from Generalitat Valenciana and by the RTI2018-093521-B-C32 grant from the Ministerio de Ciencia, Innovacion y Universidades. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Proper generalized decomposition es_ES
dc.subject Motion planning es_ES
dc.subject Artificial potential fields es_ES
dc.subject Harmonic functions es_ES
dc.subject Laplace equation es_ES
dc.subject Dynamic environment es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8122245 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2019%2F124/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093521-B-C32/ES/GEOMETRIA Y TOPOLOGIA DE LOS MODELOS DE ORDEN REDUCIDO: APLICACIONES EN ARQUITECTURA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Falcó, A.; Hilario, L.; Montés, N.; Mora, MC.; Nadal, E. (2020). A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics. 8(12):1-11. https://doi.org/10.3390/math8122245 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8122245 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\424376 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841 es_ES
dc.description.references Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777 es_ES
dc.description.references Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106 es_ES
dc.description.references Kim, J.-O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8(3), 338-349. doi:10.1109/70.143352 es_ES
dc.description.references Connolly, C. I., & Grupen, R. A. (1993). The applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931-946. doi:10.1002/rob.4620100704 es_ES
dc.description.references Garrido, S., Moreno, L., Blanco, D., & Martín Monar, F. (2009). Robotic Motion Using Harmonic Functions and Finite Elements. Journal of Intelligent and Robotic Systems, 59(1), 57-73. doi:10.1007/s10846-009-9381-3 es_ES
dc.description.references Bai, X., Yan, W., Cao, M., & Xue, D. (2019). Distributed multi‐vehicle task assignment in a time‐invariant drift field with obstacles. IET Control Theory & Applications, 13(17), 2886-2893. doi:10.1049/iet-cta.2018.6125 es_ES
dc.description.references Bai, X., Yan, W., Ge, S. S., & Cao, M. (2018). An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Information Sciences, 453, 227-238. doi:10.1016/j.ins.2018.04.044 es_ES
dc.description.references Falcó, A., & Nouy, A. (2011). Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numerische Mathematik, 121(3), 503-530. doi:10.1007/s00211-011-0437-5 es_ES
dc.description.references Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x es_ES
dc.description.references Falcó, A., Montés, N., Chinesta, F., Hilario, L., & Mora, M. C. (2018). On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems. Journal of Computational and Applied Mathematics, 330, 1093-1107. doi:10.1016/j.cam.2017.08.007 es_ES
dc.description.references Domenech, L., Falcó, A., García, V., & Sánchez, F. (2016). Towards a 2.5D geometric model in mold filling simulation. Journal of Computational and Applied Mathematics, 291, 183-196. doi:10.1016/j.cam.2015.02.043 es_ES
dc.description.references Falcó, A., & Nouy, A. (2011). A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. Journal of Mathematical Analysis and Applications, 376(2), 469-480. doi:10.1016/j.jmaa.2010.12.003 es_ES
dc.description.references Falcó, A., & Hackbusch, W. (2012). On Minimal Subspaces in Tensor Representations. Foundations of Computational Mathematics, 12(6), 765-803. doi:10.1007/s10208-012-9136-6 es_ES
dc.description.references Canuto, C., & Urban, K. (2005). Adaptive Optimization of Convex Functionals in Banach Spaces. SIAM Journal on Numerical Analysis, 42(5), 2043-2075. doi:10.1137/s0036142903429730 es_ES
dc.description.references Ammar, A., Chinesta, F., & Falcó, A. (2010). On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems. Archives of Computational Methods in Engineering, 17(4), 473-486. doi:10.1007/s11831-010-9048-z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem