- -

Digital homotopy relations and digital homology theories

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digital homotopy relations and digital homology theories

Mostrar el registro completo del ítem

Staecker, PC. (2021). Digital homotopy relations and digital homology theories. Applied General Topology. 22(2):223-250. https://doi.org/10.4995/agt.2021.13154

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/173894

Ficheros en el ítem

Metadatos del ítem

Título: Digital homotopy relations and digital homology theories
Autor: Staecker, P. Christopher
Fecha difusión:
Resumen:
[EN] In this paper we prove results relating to two homotopy relations and four homology theories developed in the topology of digital images.We introduce a new type of homotopy relation for digitally continuous functions ...[+]
Palabras clave: Digital topology , Digital homotopy , Homology , Cubical homology
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.13154
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.13154
Tipo: Artículo

References

H. Arslan, I. Karaca and A. Öztel, Homology groups of n-dimensional digital images, in: Turkish National Mathematics Symposium XXI (2008), 1-13.

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, no. 1 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Generalized normal product adjacency in digital topology, Appl. Gen. Topol. 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798 [+]
H. Arslan, I. Karaca and A. Öztel, Homology groups of n-dimensional digital images, in: Turkish National Mathematics Symposium XXI (2008), 1-13.

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, no. 1 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Generalized normal product adjacency in digital topology, Appl. Gen. Topol. 18, no. 2 (2017), 401-427. https://doi.org/10.4995/agt.2017.7798

L. Boxer, I. Karaca and A. Öztel, Topological invariants in digital images, J. Math. Sci. Adv. Appl. 11, no. 2 (2011), 109-140.

L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474

O. Ege and I. Karaca, Fundamental properties of digital simplicial homology groups, American Journal of Computer Technology and Application 1 (2013), 25-41.

S.-E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171, no. 1-3 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018

A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

S. S. Jamil and D. Ali, Digital Hurewicz theorem and digital homology theory, arxiv eprint 1902.02274v3.

T. Kaczynski, K. Mischaikow and M. Mrozek, Computing homology. Algebraic topological methods in computer science (Stanford, CA, 2001), Homology Homotopy Appl. 5, no. 2 (2003), 233-256. https://doi.org/10.4310/HHA.2003.v5.n2.a8

I. Karaca and O. Ege, Cubical homology in digital images, International Journal of Information and Computer Science, 1 (2012), 178-187.

D. W. Lee, Digital singular homology groups of digital images, Far East Journal of Mathematics 88 (2014), 39-63.

G. Lupton, J. Oprea and N. Scoville, A fundamental group for digital images, preprint.

W. S. Massey, A Basic Course in Algebraic Topology,Graduate Texts in Mathematics, 127. Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4939-9063-4

A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem