- -

Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Huerta, Álvaro es_ES
dc.contributor.author Martínez-Rodrigo, Arturo es_ES
dc.contributor.author Puchol, Alberto es_ES
dc.contributor.author Pachón, Marta I. es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2021-12-01T09:44:40Z
dc.date.available 2021-12-01T09:44:40Z
dc.date.issued 2020-10-30 es_ES
dc.identifier.isbn 978-1-7281-8803-4 es_ES
dc.identifier.uri http://hdl.handle.net/10251/177799
dc.description © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.¿ es_ES
dc.description.abstract [EN] Convolutional neural networks (CNNs) have recently become popular for electrocardiogram (ECG) analysis. However, their ability for ECG quality assessment has still not been thoroughly assessed. This challenging topic, aimed at identifying poor-quality ECG intervals, could facilitate more accurate decisions on cardiac disorders, especially from wearable long-term ECG monitoring systems. Hence, this work introduces a comparative study about how several CNN algorithms discern between high and low-quality ECGs. Because no many datases with large amount of annotated ECG signals are freely available, three pretrained CNNs, such as AlexNet, VGG16 and GoogLeNet, have been compared. For that purpose, 2,000 5 second-length ECG excerpts were extracted from a public database and classified into two groups. Thus, 1,000 ECG intervals were annotated as noisy and other 1,000 segments presented sufficient quality for further analysis. For robust validation of the algorithms, five learningtesting cycles with random 80/20 splits of the dataset were conducted. Whereas all CNN models achieved mean accuracies about 90%, remarkable differences were seen in terms of computational time and memory usage. Thus, AlexNet was the fastest method classifying ECG excerpts, but GoogLeNet required the lowest memory content for its performance. Consequently, both algorithms reported an interesting trade-off between poor-quality ECG identification accuracy and computational load. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2020 E-Health and Bioengineering Conference (EHB) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Convolutional Neural Network es_ES
dc.subject Electrocardiogram es_ES
dc.subject AlexNet es_ES
dc.subject VGG16 es_ES
dc.subject GoogLeNet es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/EHB50910.2020.9280217 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Huerta, Á.; Martínez-Rodrigo, A.; Puchol, A.; Pachón, MI.; Alcaraz, R.; Rieta, JJ. (2020). Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280217 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 8th International Conference on e-Health and Bioengineering (EHB 2020) es_ES
dc.relation.conferencedate Octubre 29-30,2020 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.1109/EHB50910.2020.9280217 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\433196 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem