Mostrar el registro sencillo del ítem
dc.contributor.author | Huerta, Álvaro | es_ES |
dc.contributor.author | Martínez-Rodrigo, Arturo | es_ES |
dc.contributor.author | Puchol, Alberto | es_ES |
dc.contributor.author | Pachón, Marta I. | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.date.accessioned | 2021-12-01T09:44:40Z | |
dc.date.available | 2021-12-01T09:44:40Z | |
dc.date.issued | 2020-10-30 | es_ES |
dc.identifier.isbn | 978-1-7281-8803-4 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/177799 | |
dc.description | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.¿ | es_ES |
dc.description.abstract | [EN] Convolutional neural networks (CNNs) have recently become popular for electrocardiogram (ECG) analysis. However, their ability for ECG quality assessment has still not been thoroughly assessed. This challenging topic, aimed at identifying poor-quality ECG intervals, could facilitate more accurate decisions on cardiac disorders, especially from wearable long-term ECG monitoring systems. Hence, this work introduces a comparative study about how several CNN algorithms discern between high and low-quality ECGs. Because no many datases with large amount of annotated ECG signals are freely available, three pretrained CNNs, such as AlexNet, VGG16 and GoogLeNet, have been compared. For that purpose, 2,000 5 second-length ECG excerpts were extracted from a public database and classified into two groups. Thus, 1,000 ECG intervals were annotated as noisy and other 1,000 segments presented sufficient quality for further analysis. For robust validation of the algorithms, five learningtesting cycles with random 80/20 splits of the dataset were conducted. Whereas all CNN models achieved mean accuracies about 90%, remarkable differences were seen in terms of computational time and memory usage. Thus, AlexNet was the fastest method classifying ECG excerpts, but GoogLeNet required the lowest memory content for its performance. Consequently, both algorithms reported an interesting trade-off between poor-quality ECG identification accuracy and computational load. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2020 E-Health and Bioengineering Conference (EHB) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Convolutional Neural Network | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject | AlexNet | es_ES |
dc.subject | VGG16 | es_ES |
dc.subject | GoogLeNet | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/EHB50910.2020.9280217 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Huerta, Á.; Martínez-Rodrigo, A.; Puchol, A.; Pachón, MI.; Alcaraz, R.; Rieta, JJ. (2020). Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280217 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 8th International Conference on e-Health and Bioengineering (EHB 2020) | es_ES |
dc.relation.conferencedate | Octubre 29-30,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/EHB50910.2020.9280217 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\433196 | es_ES |