Mostrar el registro sencillo del ítem
dc.contributor.author | Fuentes-López, José Manuel | es_ES |
dc.contributor.author | Taverner-Aparicio, Joaquín José | es_ES |
dc.contributor.author | Rincón Arango, Jaime Andrés | es_ES |
dc.contributor.author | Botti Navarro, Vicente Juan | es_ES |
dc.date.accessioned | 2021-12-27T08:37:09Z | |
dc.date.available | 2021-12-27T08:37:09Z | |
dc.date.issued | 2020-10-09 | es_ES |
dc.identifier.isbn | 978-3-030-51999-5 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/178898 | |
dc.description.abstract | [EN] The recognition of emotions in tone voice is currently a tool with a high potential when it comes to making recommendations, since it allows to personalize recommendations using the mood of the users as information. However, recognizing emotions using tone of voice is a complex task since it is necessary to pre-process the signal and subsequently recognize the emotion. Most of the current proposals use recurrent networks based on sequences with a temporal relationship. The disadvantage of these networks is that they have a high runtime, which makes it difficult to use in real-time applications. On the other hand, when defining this type of classifier, culture and language must be taken into account, since the tone of voice for the same emotion can vary depending on these cultural factors. In this work we propose a culturally adapted model for recognizing emotions from the voice tone using convolutional neural networks. This type of network has a relatively short execution time allowing its use in real time applications. The results we have obtained improve the current state of the art, reaching 93.6% success over the validation set. | es_ES |
dc.description.sponsorship | This work is partially supported by the Spanish Government project TIN2017-89156-R, GVA-CEICE project PROMETEO/2018/002, Generalitat Valenciana and European Social Fund FPI grant ACIF/2017/085, Universitat Politecnica de Valencia research grant (PAID-10-19), and by the Spanish Government (RTI2018-095390-B-C31). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Highlights in Practical Applications of Agents, Multi-Agent Systems, and Trust-worthiness. The PAAMS Collection | es_ES |
dc.relation.ispartofseries | Communications in Computer and Information Science;1233 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Emotion recognition | es_ES |
dc.subject | Voice analysis | es_ES |
dc.subject | Recommendation system | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Towards a Classifier to Recognize Emotions Using Voice to Improve Recommendations | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-51999-5_18 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///ACIF%2F2017%2F085//AYUDA PREDOCTORAL CONSELLERIA-TAVERNER APARICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095390-B-C31/ES/HACIA UNA MOVILIDAD INTELIGENTE Y SOSTENIBLE SOPORTADA POR SISTEMAS MULTI-AGENTES Y EDGE COMPUTING/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2018%2F002//TECNOLOGIES PER ORGANITZACIONS HUMANES EMOCIONALS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV-VIN//PAID-10-19//Redes de sensores inteligentes en el entorno de las Smart Cities./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Fuentes-López, JM.; Taverner-Aparicio, JJ.; Rincón Arango, JA.; Botti Navarro, VJ. (2020). Towards a Classifier to Recognize Emotions Using Voice to Improve Recommendations. Springer. 218-225. https://doi.org/10.1007/978-3-030-51999-5_18 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 18th International Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 2020). Workshops | es_ES |
dc.relation.conferencedate | Octubre 07-09,2020 | es_ES |
dc.relation.conferenceplace | L'Aquila, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-51999-5_18 | es_ES |
dc.description.upvformatpinicio | 218 | es_ES |
dc.description.upvformatpfin | 225 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\415772 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.description.references | Balakrishnan, A., Rege, A.: Reading emotions from speech using deep neural networks. Technical report, Stanford University, Computer Science Department (2017) | es_ES |
dc.description.references | Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997) | es_ES |
dc.description.references | Kerkeni, L., Serrestou, Y., Mbarki, M., Raoof, K., Mahjoub, M.: Speech emotion recognition: methods and cases study, pp. 175–182 (2018) | es_ES |
dc.description.references | McCluskey, K.W., Albas, D.C., Niemi, R.R., Cuevas, C., Ferrer, C.: Cross-cultural differences in the perception of the emotional content of speech: a study of the development of sensitivity in Canadian and Mexican children. Dev. Psychol. 11(5), 551 (1975) | es_ES |
dc.description.references | Paliwal, K.K.: Spectral subband centroid features for speech recognition. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing. ICASSP 1998 (Cat. No. 98CH36181), vol. 2, pp. 617–620. IEEE (1998) | es_ES |
dc.description.references | Paulmann, S., Uskul, A.K.: Cross-cultural emotional prosody recognition: evidence from Chinese and British listeners. Cogn. Emot. 28(2), 230–244 (2014) | es_ES |
dc.description.references | Pépiot, E.: Voice, speech and gender: male-female acoustic differences and cross-language variation in English and French speakers. Corela Cogn. Représent. Lang. (HS-16) (2015) | es_ES |
dc.description.references | Picard, R.W., et al.: Affective computing. Perceptual Computing Section, Media Laboratory, Massachusetts Institute of Technology (1995) | es_ES |
dc.description.references | Rincon, J., de la Prieta, F., Zanardini, D., Julian, V., Carrascosa, C.: Influencing over people with a social emotional model. Neurocomputing 231, 47–54 (2017) | es_ES |
dc.description.references | Russell, J.A., Lewicka, M., Niit, T.: A cross-cultural study of a circumplex model of affect. J. Pers. Soc. Psychol. 57(5), 848 (1989) | es_ES |
dc.description.references | Schuller, B., Rigoll, G., Lang, M.: Hidden Markov model-based speech emotion recognition, vol. 2, pp. 401–404 (2003) | es_ES |
dc.description.references | Schuller, B., Villar, R., Rigoll, G., Lang, M.: Meta-classifiers in acoustic and linguistic feature fusion-based affect recognition, vol. 1, pp. 325–328 (2005) | es_ES |
dc.description.references | Thompson, W., Balkwill, L.-L.: Decoding speech prosody in five languages. Semiotica 2006, 407–424 (2006) | es_ES |
dc.description.references | Tyagi, V., Wellekens, C.: On desensitizing the Mel-cepstrum to spurious spectral components for robust speech recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP 2005, vol. 1, pp. I–529. IEEE (2005) | es_ES |
dc.description.references | Ueda, M., Morishita, Y., Nakamura, T., Takata, N., Nakajima, S.: A recipe recommendation system that considers user’s mood. In: Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services, pp. 472–476. ACM (2016) | es_ES |
dc.description.references | Zhang, B., Quan, C., Ren, F.: Study on CNN in the recognition of emotion in audio and images. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–5, June 2016 | es_ES |