Padovano, D.; Martinez-Rodrigo, A.; Pastor, JM.; Rieta, JJ.; Alcaraz, R. (2020). An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques. IEEE. 1-4. https://doi.org/10.1109/EHB50910.2020.9280302
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/178913
Título:
|
An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques
|
Autor:
|
Padovano, Daniele
Martinez-Rodrigo, Arturo
Pastor, Jose M.
Rieta, J J
Alcaraz, Raúl
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
|
Fecha difusión:
|
|
Resumen:
|
[EN] Obstructive sleep apnea (OSA) is a respiratory syndrome of high incidence in the general population and correlated with some cardiovascular diseases. Several techniques have been proposed in the last decades to find ...[+]
[EN] Obstructive sleep apnea (OSA) is a respiratory syndrome of high incidence in the general population and correlated with some cardiovascular diseases. Several techniques have been proposed in the last decades to find a surrogate method to polysomnography (PSG), the gold standard for the diagnosis of OSA. The present study comprises an experimental review on the state-of-the-art methods for OSA detection through the public Apnea-ECG database, which is available at PhysioNet. Precisely, traditional time-frequency domain features were extracted from the heart rate variability (HRV) signal, together with some common complexity measures. Given their ability to deal with real-world time series, two additional entropy-based measures were also tested, i.e., Rènyi and Tsallis entropies. Moreover, univariate and multivariate classifiers were applied, including diagnostic test, support vectors machine, and k-nearest neighbors. Ultimately, two sequential feature selection (SFS) algorithms were employed to reduce the computational cost of the resulting discriminant models. The major findings reported that multivariate classifiers reached similar results to those found in the literature. Moreover, univariate classification results suggested that the frequency domain features provided the best OSA detection, although a well-known entropy index also obtained a good performance.
[-]
|
Palabras clave:
|
Obstructive sleep apnea
,
Heart rate variability
,
Entropy
,
Lomb-Scargle periodogram
|
Derechos de uso:
|
Cerrado |
ISBN:
|
978-1-7281-8803-4
|
Fuente:
|
2020 E-Health and Bioengineering Conference (EHB).
|
DOI:
|
10.1109/EHB50910.2020.9280302
|
Editorial:
|
IEEE
|
Versión del editor:
|
https://doi.org/10.1109/EHB50910.2020.9280302
|
Título del congreso:
|
8th International Conference on e-Health and Bioengineering (EHB 2020)
|
Lugar del congreso:
|
Online
|
Fecha congreso:
|
Octubre 29-30,2020
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83952-C3-1-R/ES/ESTUDIO MULTICENTRICO PARA LA EVALUACION DEL SUSTRATO ARRITMOGENICO EN PACIENTES CON FIBRILACION AURICULAR. APLICACION A LA ABLACION POR CATETER/
info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/
info:eu-repo/grantAgreement///AICO%2F2019%2F036//METODOS DE DIAGNOSTICO Y TERAPIA PERSONALIZADA EN ABLACION POR CATETER DE ARRITMIAS CARDIACAS/
|
Descripción:
|
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
|
Agradecimientos:
|
This research has been supported by grants DPI2017-83952-
C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/
000411 from Junta de Comunidades de Castilla-la Mancha
and AICO/2019/036 from Generalitat Valenciana. Moreover,
Daniele ...[+]
This research has been supported by grants DPI2017-83952-
C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/
000411 from Junta de Comunidades de Castilla-la Mancha
and AICO/2019/036 from Generalitat Valenciana. Moreover,
Daniele Padovano has held graduate research scholarships from
Escuela Politecnica de Cuenca and Instituto de Tecnolog ¿ ¿¿as Audiovisuales, University of Castilla-La Mancha
[-]
|
Tipo:
|
Comunicación en congreso
Capítulo de libro
|