Mostrar el registro sencillo del ítem
dc.contributor.author | Parrilla Bernabé, Eduardo | es_ES |
dc.contributor.author | Ruescas, Ana-Virginia | es_ES |
dc.contributor.author | Solves, Juan-Antonio | es_ES |
dc.contributor.author | Ballester Fernandez, Alfredo | es_ES |
dc.contributor.author | Nacher Fernandez, Beatriz | es_ES |
dc.contributor.author | Alemany Mut, Mª Sandra | es_ES |
dc.contributor.author | Garrido Jaen, Jose David | es_ES |
dc.date.accessioned | 2022-01-03T08:46:33Z | |
dc.date.available | 2022-01-03T08:46:33Z | |
dc.date.issued | 2020-07-20 | es_ES |
dc.identifier.isbn | 978-3-030-51193-7 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/179206 | |
dc.description.abstract | [EN] Size, shape and posture are fundamental features of digital human models (DHM) to obtain accurate virtual simulations of the ergonomics of products and environments. Research on 3D body scanning, processing and modelling have enabled the generation of avatars representing specific populations and morphotypes in standing and seated postures being the basis to define size and shape of DHM. Posture is implemented with biomechanical models of the human movement. Most of the research is focused on posture control and movement tracking to analyze the variability in different contexts (e.g. driving, performing a working task). Motion capture technology used for this purpose, requires a limited number of sensors or reflective markers attached to the body according to the definition of body segments. 3D body scanning and motion capture are both technologies currently used to analyze human body shape and biomechanics to apply it to enhance digital human models. These technologies may converge on the so-called temporal 3D scanners or 4D scanners, a new technology recently developed to scan the body in motion. With this technology, it is possible to obtain sequences of dense 3D point clouds representing the movement of the body. In this paper, a novel methodology to create realistic 3D body models in motion is proposed. This method is supported by a new 4D scanning system (Move 4D) and a data driven-model. Move4D is a modular photogrammetry-based 4D scanning system. It consists of a set of 12 synchronized modules to scan full bodies with texture in motion. It can capture up to 180 fps with a resolution of 2 mm. The algorithms have been conceived and optimized to automatically process the series of raw point clouds captured. They rely on a data-driven body model including shape, pose and soft-tissue deformation trained with a large database and a deep learning model. The process is fully automatic and does not require any interactive landmarking or revision. The 3D outcome of this methodology is one noise-and artefact-free watertight mesh per frame and a model of shape, pose and soft-tissue that can be rigged with a 23-joint skeleton. This type of outcome permits their use for many applications such as simulations, augmented and virtual reality (AR/VR) or biomechanical analysis purposes. | es_ES |
dc.description.sponsorship | The research presented in this paper have been developed within the projects IMDEEA/2020/85 and MDEEA/2020/87. Funding requested to Instituto Valenciano de Competitividad Empresarial (IVACE), call for proposals 2020 for Technology Centers of the Comunitat Valenciana, co-funded by ERDF Funds, EU Operational Program of the Comunitat Valenciana 2014-2020. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Advances in Industrial Design. Proceedings of the AHFE 2020 | es_ES |
dc.relation.ispartofseries | Advances in Intelligent Systems and Computing;1206 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Anthropometry | es_ES |
dc.subject | Temporal scanning 4D | es_ES |
dc.subject | Data-driven | es_ES |
dc.subject | Body model | es_ES |
dc.subject | Human motion | es_ES |
dc.subject | Marker-less | es_ES |
dc.subject | Motion analysis | es_ES |
dc.subject | Image processing | es_ES |
dc.subject | 3D body model | es_ES |
dc.subject | Shape | es_ES |
dc.subject | Pose | es_ES |
dc.subject | Soft-tissue deformation | es_ES |
dc.title | A Methodology to Create 3D Body Models in Motion | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-51064-0_39 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2020%2F87//CUSTOM_DHM. Adaptación del modelo digital humano para su aplicación en el diseño de productos y aplicaciones digitales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMDEEA%2F2020%2F85//3DBody-Hub. Desarrollo de herramientas para la gestión y uso de datos antropométricos para la innovación en el diseño de nuevos productos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Parrilla Bernabé, E.; Ruescas, A.; Solves, J.; Ballester Fernandez, A.; Nacher Fernandez, B.; Alemany Mut, MS.; Garrido Jaen, JD. (2020). A Methodology to Create 3D Body Models in Motion. Springer. 309-314. https://doi.org/10.1007/978-3-030-51064-0_39 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 11th International Conference on Applied Human Factors and Ergonomics (AHFE 2020) | es_ES |
dc.relation.conferencedate | Julio 16-20,2020 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-51064-0_39 | es_ES |
dc.description.upvformatpinicio | 309 | es_ES |
dc.description.upvformatpfin | 314 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\434147 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.description.references | Scataglini, S., Paul, G.: DHM and Posturography. Academic Press, London (2019) | es_ES |
dc.description.references | Zakaria, N., Gupta, D.: Anthropometry, Apparel Sizing and Design. Woodhead Publishing, Cambridge (2019) | es_ES |
dc.description.references | Liberadzki, P., Adamczyk, M., Witkowski, M., Sitnik, R.: Structured-light-based system for shape measurement of the human body in motion. Sensors 18, 2827 (2018). https://doi.org/10.3390/s18092827 | es_ES |
dc.description.references | Parrilla, E., Ballester, A., Parra, P., Ruescas, A., Uriel, J., Garrido, D., Alemany, S.: MOVE 4D: accurate high-speed 3D body models in motion. In: Proceedings of 3DBODY.TECH 2019, Lugano, Switzerland, 22–23 October 2019, pp. 30–32 (2019). https://doi.org/10.15221/19.030 | es_ES |