García-Pardo, JG.; Colomer, A.; Verdú-Monedero, R.; Dolz, J.; Naranjo Ornedo, V. (2021). A Self-Training Framework for Glaucoma Grading In OCT B-Scans. IEEE. 1281-1285. https://doi.org/10.23919/EUSIPCO54536.2021.9616159
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/180300
Title:
|
A Self-Training Framework for Glaucoma Grading In OCT B-Scans
|
Author:
|
García-Pardo, José Gabriel
Colomer, Adrián
Verdú-Monedero, Rafael
Dolz, Jose
Naranjo Ornedo, Valeriana
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Issued date:
|
|
Abstract:
|
[EN] In this paper, we present a self-training-based framework for glaucoma grading using OCT B-scans under the presence of domain shift. Particularly, the proposed two-step learning methodology resorts to pseudo-labels ...[+]
[EN] In this paper, we present a self-training-based framework for glaucoma grading using OCT B-scans under the presence of domain shift. Particularly, the proposed two-step learning methodology resorts to pseudo-labels generated during the first step to augment the training dataset on the target domain, which is then used to train the final target model. This allows transferring knowledge-domain from the unlabeled data. Additionally, we propose a novel glaucoma-specific backbone which introduces residual and attention modules via skip-connections to refine the embedding features of the latent space. By doing this, our model is capable of improving state-of-the-art from a quantitative and interpretability perspective. The reported results demonstrate that the proposed learning strategy can boost the performance of the model on the target dataset without incurring in additional annotation steps, by using only labels from the source examples. Our model consistently outperforms the baseline by 1¿3% across different metrics and bridges the gap with respect to training the model on the labeled target data.
[-]
|
Subjects:
|
Glaucoma grading
,
Self-training
,
OCT
|
Copyrigths:
|
Reserva de todos los derechos
|
ISBN:
|
978-9-0827-9706-0
|
Source:
|
29th European Signal Processing Conference (EUSIPCO 2021). Proceedings.
|
DOI:
|
10.23919/EUSIPCO54536.2021.9616159
|
Publisher:
|
IEEE
|
Publisher version:
|
https://doi.org/10.23919/EUSIPCO54536.2021.9616159
|
Conference name:
|
29th European Signal Processing Conference (EUSIPCO 2021)
|
Conference place:
|
Online
|
Conference date:
|
Agosto 23-27,2021
|
Project ID:
|
info:eu-repo/grantAgreement/EC/H2020/732613/EU/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/
info:eu-repo/grantAgreement///PTA2017-14610-I//AYUDA TECNICO DE APOYO MINISTERIO-GARCIA PARDO/
|
Thanks:
|
We gratefully acknowledge the support of the Generalitat
Valenciana (GVA) for the donation of the DGX A100 used for
this work, action co-financed by the European Union through
the Programa Operativo del Fondo Europeo de ...[+]
We gratefully acknowledge the support of the Generalitat
Valenciana (GVA) for the donation of the DGX A100 used for
this work, action co-financed by the European Union through
the Programa Operativo del Fondo Europeo de Desarrollo
Regional (FEDER) de la Comunitat Valenciana 2014-2020
(IDIFEDER/2020/030).
[-]
|
Type:
|
Comunicación en congreso
Capítulo de libro
|