Mostrar el registro sencillo del ítem
dc.contributor.author | Ballestero, Eric | es_ES |
dc.contributor.author | Hamilton, Brian | es_ES |
dc.contributor.author | Jimenez, Noe | es_ES |
dc.contributor.author | Romero-García, Vicent | es_ES |
dc.contributor.author | Groby, Jean Philippe | es_ES |
dc.contributor.author | Aygun, Haydar | es_ES |
dc.contributor.author | Dance, Stephen | es_ES |
dc.date.accessioned | 2022-01-28T07:41:32Z | |
dc.date.available | 2022-01-28T07:41:32Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180340 | |
dc.description.abstract | [EN] Most simulations involving metamaterials often require complex physics to be solved through refined meshing grids. However, it can prove challenging to simulate the effect of local physical conditions created by said metamaterials into much wider computing sceneries due to the increased meshing load. We thus present in this work a framework for simulating complex structures with detailed geometries, such as metamaterials, into large Finite-Difference Time-Domain (FDTD) computing environments by reducing them to their equivalent surface impedance represented by a parallel-series RLC circuit. This reduction helps to simplify the physics involved as well as drastically reducing the meshing load of the model and the implicit calculation time. Here, an emphasis is made on scattering comparisons between an acoustic metamaterial and its equivalent surface impedance through analytical and numerical methods. Additionally, the problem of fitting RLC parameters to complex impedance data obtained from transfer matrix models is herein solved using a novel approach based on zero crossings of admittance phase derivatives. Despite the simplification process, the proposed framework achieves good overall results with respect to the original acoustic scatterer while ensuring relatively short simulation times over a vast range of frequencies. | es_ES |
dc.description.sponsorship | The collaboration between the authors of this article was made possible thanks to European Cooperation in Science and Technology (COST) Action CA15125 -Design in Noise Reducing Materials (DENORMS). This study was financed by the Royal Opera House, Covent Garden, and the United Kingdom Acoustics Network (UKAN). The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire. N.J. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through grant "Juan de la Cierva-Incorporacion" (IJC2018-037897-I). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Metadiffusers | es_ES |
dc.subject | Scattering | es_ES |
dc.subject | Finite-difference time-domain (FDTD) | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Scattering Evaluation of Equivalent Surface Impedances of Acoustic Metamaterials in Large FDTD Volumes Using RLC Circuit Modelling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app11178084 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//CA 15125//DENORMS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//IJC2018-037897-I//AYUDA JUAN DE LA CIERVA INCORPORACION-JIMENEZ GONZALEZ/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Ballestero, E.; Hamilton, B.; Jimenez, N.; Romero-García, V.; Groby, JP.; Aygun, H.; Dance, S. (2021). Scattering Evaluation of Equivalent Surface Impedances of Acoustic Metamaterials in Large FDTD Volumes Using RLC Circuit Modelling. Applied Sciences. 11(17):1-15. https://doi.org/10.3390/app11178084 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app11178084 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\444694 | es_ES |
dc.contributor.funder | Region Pays de la Loire | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |