dc.contributor.author |
Silva-Rodríguez, Julio
|
es_ES |
dc.contributor.author |
Colomer, Adrián
|
es_ES |
dc.contributor.author |
Naranjo Ornedo, Valeriana
|
es_ES |
dc.date.accessioned |
2022-01-28T07:41:41Z |
|
dc.date.available |
2022-01-28T07:41:41Z |
|
dc.date.issued |
2021-03 |
es_ES |
dc.identifier.issn |
0895-6111 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/180343 |
|
dc.description.abstract |
[EN] Background and objective: Prostate cancer is one of the main diseases affecting men worldwide. The Gleason scoring system is the primary diagnostic tool for prostate cancer. This is obtained via the visual analysis of cancerous patterns in prostate biopsies performed by expert pathologists, and the aggregation of the main Gleason grades in a combined score. Computer-aided diagnosis systems allow to reduce the workload of pathologists and increase the objectivity. Nevertheless, those require a large number of labeled samples, with pixel level annotations performed by expert pathologists, to be developed. Recently, efforts have been made in the literature to develop algorithms aiming the direct estimation of the global Gleason score at biopsy/core level with global labels. However, these algorithms do not cover the accurate localization of the Gleason patterns into the tissue. These location maps are the basis to provide a reliable computer-aided diagnosis system to the experts to be used in clinical practice by pathologists. In this work, we propose a deep-learning-based system able to detect local cancerous patterns in the prostate tissue using only the global-level Gleason score obtained from clinical records during training.
Methods: The methodological core of this work is the proposed weakly-supervised-trained convolutional neural network, WeGleNet, based on a multi-class segmentation layer after the feature extraction module, a global aggregation, and the slicing of the background class for the model loss estimation during training.
Results: Using a public dataset of prostate tissue-micro arrays, we obtained a Cohen's quadratic kappa (kappa) of 0.67 for the pixel-level prediction of cancerous patterns in the validation cohort. We compared the model performance for semantic segmentation of Gleason grades with supervised state-of-the-art architectures in the test cohort. We obtained a pixel-level kappa of 0.61 and a macro-averaged f1-score of 0.58, at the same level as fully-supervised methods. Regarding the estimation of the core-level Gleason score, we obtained a kappa of 0.76 and 0.67 between the model and two different pathologists.
Conclusions: WeGleNet is capable of performing the semantic segmentation of Gleason grades similarly to fully supervised methods without requiring pixel-level annotations. Moreover, the model reached a performance at the same level as inter-pathologist agreement for the global Gleason scoring of the cores. |
es_ES |
dc.description.sponsorship |
This work was supported by the Spanish Ministry of Economy and Competitiveness through projects DPI2016-77869 and PID2019-105142RB-C21. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Computerized Medical Imaging and Graphics |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Gleason grading |
es_ES |
dc.subject |
Prostate cancer |
es_ES |
dc.subject |
Semantic segmentation |
es_ES |
dc.subject |
Tissue micro-arrays |
es_ES |
dc.subject |
Weakly supervised |
es_ES |
dc.subject.classification |
TEORIA DE LA SEÑAL Y COMUNICACIONES |
es_ES |
dc.title |
WeGleNet: A Weakly-Supervised Convolutional Neural Network for the Semantic Segmentation of Gleason Grades in Prostate Histology Images |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.compmedimag.2020.101846 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//DPI2016-77869-C2-1-R//SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori |
es_ES |
dc.description.bibliographicCitation |
Silva-Rodríguez, J.; Colomer, A.; Naranjo Ornedo, V. (2021). WeGleNet: A Weakly-Supervised Convolutional Neural Network for the Semantic Segmentation of Gleason Grades in Prostate Histology Images. Computerized Medical Imaging and Graphics. 88:1-10. https://doi.org/10.1016/j.compmedimag.2020.101846 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.compmedimag.2020.101846 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
10 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
88 |
es_ES |
dc.identifier.pmid |
33485056 |
es_ES |
dc.relation.pasarela |
S\426100 |
es_ES |
dc.contributor.funder |
AGENCIA ESTATAL DE INVESTIGACION |
es_ES |