Mostrar el registro sencillo del ítem
dc.contributor.author | Cantó Colomina, Begoña | es_ES |
dc.contributor.author | Cantó Colomina, Rafael | es_ES |
dc.contributor.author | Urbano Salvador, Ana María | es_ES |
dc.date.accessioned | 2022-02-03T19:04:40Z | |
dc.date.available | 2022-02-03T19:04:40Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180470 | |
dc.description.abstract | [EN] Let A is an element of R-nxn be a totally nonpositive matrix (t.n.p.) with rank r and principal rank p, that is, every minor of A is nonpositive and p is the size of the largest invertible principal submatrix of A. We introduce that a triple (n, r, p) will be called negatively realizable if there exists a t.n.p. matrix A of order n and such that its rank is r and its principal rank is p. In this work we extend the results obtained for irreducible totally nonnegative matrices given in Canto and Urbano (Linear Algebra Appl 551:125-146. https://doi.org/10.1016/j.laa.2018.03.045, 2018) to t.n.p. matrices. For that, we consider the sequence of the first p-indices of A and study the linear dependence relations between their rows and columns. These relations allow us to construct t.n.p. matrices associated with a triple (n, r, p) negatively realizable and a specific sequence of the first p-indices. | es_ES |
dc.description.sponsorship | This research was supported by the Ministerio de Economía y Competividad under the Spanish DGI Grant MTM2017-85669-P-AR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Totally nonpositive matrix | es_ES |
dc.subject | Principal rank | es_ES |
dc.subject | Triple negatively realizable | es_ES |
dc.subject | Linear algebra | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On totally nonpositive matrices associated with a triple negatively realizable | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-021-01073-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cantó Colomina, B.; Cantó Colomina, R.; Urbano Salvador, AM. (2021). On totally nonpositive matrices associated with a triple negatively realizable. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-25. https://doi.org/10.1007/s13398-021-01073-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-021-01073-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\438942 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.description.references | Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987). https://doi.org/10.1016/0024-3795(87)90313-2 | es_ES |
dc.description.references | Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997) | es_ES |
dc.description.references | Bhatia, R.: Positive Definite Matrices, Princeton Ser. Appl. Math. (2007) | es_ES |
dc.description.references | Cantó, R., Urbano, A.M.: On the maximum rank of totally nonnegative matrices. Linear Algebra Appl. 551, 125–146 (2018). https://doi.org/10.1016/j.laa.2018.03.045 | es_ES |
dc.description.references | Cantó, R., Koev, P., Ricarte, B., Urbano, A.M.: LDU-factorization of nonsingular totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 30, 777–782 (2008). https://doi.org/10.1137/060662897 | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra Appl. 431, 2213–2227 (2009). https://doi.org/10.1016/j.laa.2009.07.020 | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Quasi-$$LDU$$ factorization of nonsingular totally nonpositive matrices. Linear Algebra Appl. 439, 836–851 (2013). https://doi.org/10.1016/j.laa.2012.06.010 | es_ES |
dc.description.references | Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in quasi-$$LDU$$ form of totally nonpositive rectangular matrices. Linear Algebra Appl. 440, 61–82 (2014). https://doi.org/10.1016/j.laa.2013.11.002 | es_ES |
dc.description.references | Cantó, R., Peláez, M.J., Urbano, A.M.: On the characterization of totally nonpositive matrices. SeMA J. 73, 347–368 (2016). https://doi.org/10.1007/s40324-016-0073-1 | es_ES |
dc.description.references | Fallat, S.M., van den Driessche, P.: On Matrices with all minors negative. Electron. J. Linear Algebra 7, 92–99 (2000). http://math.technion.ac.il/iic/ela | es_ES |
dc.description.references | Fallat, S.M., Gekhtman, M.I.: Jordan structure of totally nonnegative matrices. Can. J. Math. 57, 82–98 (2005). https://doi.org/10.4153/CJM-2005-004-0 | es_ES |
dc.description.references | Fallat, S.M, Johnson, C.R.: Totally Nonnegative Matrices. Princeton Ser. Appl. Math. (2011) | es_ES |
dc.description.references | Fallat, S.M., Gekhtman, M.I., Johnson, C.R.: Spectral structures of irreducible totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 22, 627–645 (2000). https://doi.org/10.1137/S0895479800367014 | es_ES |
dc.description.references | Gasca, M., Micchelli, C.A.: Total Positivity and Applications. Math. Appl., 359, Kluwer Academic Publishers, Dordrecht (1996) | es_ES |
dc.description.references | Huang, R., Chu, D.: Total nonpositivity of nonsingular matrices. Linear Algebra Appl. 432, 2931–2941 (2010). https://doi.org/10.1016/j.laa.2009.12.043 | es_ES |
dc.description.references | Karlin, S.: Total Nonpositivity, vol. I. Stanford University Press, Stanford (1968) | es_ES |
dc.description.references | Parthasarathy, T., Ravindran, G.: N-matrices. Linear Algebra Appl. 139, 89–102 (1990). https://doi.org/10.1016/0024-3795(90)90390-X | es_ES |
dc.description.references | Pinkus, A.: Totally Positive Matrices. Cambridge University Press, New York (2010) | es_ES |
dc.description.references | Saigal, R.: On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl. Math. 23, 46–60 (1972). https://www.jstor.org/stable/2099622 | es_ES |