- -

On totally nonpositive matrices associated with a triple negatively realizable

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On totally nonpositive matrices associated with a triple negatively realizable

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantó Colomina, Begoña es_ES
dc.contributor.author Cantó Colomina, Rafael es_ES
dc.contributor.author Urbano Salvador, Ana María es_ES
dc.date.accessioned 2022-02-03T19:04:40Z
dc.date.available 2022-02-03T19:04:40Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180470
dc.description.abstract [EN] Let A is an element of R-nxn be a totally nonpositive matrix (t.n.p.) with rank r and principal rank p, that is, every minor of A is nonpositive and p is the size of the largest invertible principal submatrix of A. We introduce that a triple (n, r, p) will be called negatively realizable if there exists a t.n.p. matrix A of order n and such that its rank is r and its principal rank is p. In this work we extend the results obtained for irreducible totally nonnegative matrices given in Canto and Urbano (Linear Algebra Appl 551:125-146. https://doi.org/10.1016/j.laa.2018.03.045, 2018) to t.n.p. matrices. For that, we consider the sequence of the first p-indices of A and study the linear dependence relations between their rows and columns. These relations allow us to construct t.n.p. matrices associated with a triple (n, r, p) negatively realizable and a specific sequence of the first p-indices. es_ES
dc.description.sponsorship This research was supported by the Ministerio de Economía y Competividad under the Spanish DGI Grant MTM2017-85669-P-AR. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Totally nonpositive matrix es_ES
dc.subject Principal rank es_ES
dc.subject Triple negatively realizable es_ES
dc.subject Linear algebra es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On totally nonpositive matrices associated with a triple negatively realizable es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-021-01073-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cantó Colomina, B.; Cantó Colomina, R.; Urbano Salvador, AM. (2021). On totally nonpositive matrices associated with a triple negatively realizable. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-25. https://doi.org/10.1007/s13398-021-01073-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-021-01073-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\438942 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987). https://doi.org/10.1016/0024-3795(87)90313-2 es_ES
dc.description.references Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997) es_ES
dc.description.references Bhatia, R.: Positive Definite Matrices, Princeton Ser. Appl. Math. (2007) es_ES
dc.description.references Cantó, R., Urbano, A.M.: On the maximum rank of totally nonnegative matrices. Linear Algebra Appl. 551, 125–146 (2018). https://doi.org/10.1016/j.laa.2018.03.045 es_ES
dc.description.references Cantó, R., Koev, P., Ricarte, B., Urbano, A.M.: LDU-factorization of nonsingular totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 30, 777–782 (2008). https://doi.org/10.1137/060662897 es_ES
dc.description.references Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra Appl. 431, 2213–2227 (2009). https://doi.org/10.1016/j.laa.2009.07.020 es_ES
dc.description.references Cantó, R., Ricarte, B., Urbano, A.M.: Quasi-$$LDU$$ factorization of nonsingular totally nonpositive matrices. Linear Algebra Appl. 439, 836–851 (2013). https://doi.org/10.1016/j.laa.2012.06.010 es_ES
dc.description.references Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in quasi-$$LDU$$ form of totally nonpositive rectangular matrices. Linear Algebra Appl. 440, 61–82 (2014). https://doi.org/10.1016/j.laa.2013.11.002 es_ES
dc.description.references Cantó, R., Peláez, M.J., Urbano, A.M.: On the characterization of totally nonpositive matrices. SeMA J. 73, 347–368 (2016). https://doi.org/10.1007/s40324-016-0073-1 es_ES
dc.description.references Fallat, S.M., van den Driessche, P.: On Matrices with all minors negative. Electron. J. Linear Algebra 7, 92–99 (2000). http://math.technion.ac.il/iic/ela es_ES
dc.description.references Fallat, S.M., Gekhtman, M.I.: Jordan structure of totally nonnegative matrices. Can. J. Math. 57, 82–98 (2005). https://doi.org/10.4153/CJM-2005-004-0 es_ES
dc.description.references Fallat, S.M, Johnson, C.R.: Totally Nonnegative Matrices. Princeton Ser. Appl. Math. (2011) es_ES
dc.description.references Fallat, S.M., Gekhtman, M.I., Johnson, C.R.: Spectral structures of irreducible totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 22, 627–645 (2000). https://doi.org/10.1137/S0895479800367014 es_ES
dc.description.references Gasca, M., Micchelli, C.A.: Total Positivity and Applications. Math. Appl., 359, Kluwer Academic Publishers, Dordrecht (1996) es_ES
dc.description.references Huang, R., Chu, D.: Total nonpositivity of nonsingular matrices. Linear Algebra Appl. 432, 2931–2941 (2010). https://doi.org/10.1016/j.laa.2009.12.043 es_ES
dc.description.references Karlin, S.: Total Nonpositivity, vol. I. Stanford University Press, Stanford (1968) es_ES
dc.description.references Parthasarathy, T., Ravindran, G.: N-matrices. Linear Algebra Appl. 139, 89–102 (1990). https://doi.org/10.1016/0024-3795(90)90390-X es_ES
dc.description.references Pinkus, A.: Totally Positive Matrices. Cambridge University Press, New York (2010) es_ES
dc.description.references Saigal, R.: On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl. Math. 23, 46–60 (1972). https://www.jstor.org/stable/2099622 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem