Mostrar el registro sencillo del ítem
dc.contributor.author | Safont, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Rodríguez, Alberto | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.date.accessioned | 2022-02-17T07:20:49Z | |
dc.date.available | 2022-02-17T07:20:49Z | |
dc.date.issued | 2019-12-07 | es_ES |
dc.identifier.isbn | 978-1-7281-5584-5 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/180927 | |
dc.description.abstract | [EN] This work introduces a multisensor road surface identification system that considers features from four different kind of sensors: microphones, accelerometers, speed signals, and handwheel signals. Features are extracted separately from each sensor, joined together, and then filtered using feature selection before classification. The proposed system was tested on a set of signals extracted from a specially-converted passenger car driving on a closed course. Three types of road surfaces were considered: smooth flat asphalt, cobblestones, and stripes. Three classifiers were considered: linear discriminant analysis, support vector machines, and random forests. All the considered classifiers reached over 90% accuracy, with a maximum accuracy of 96.52% for RDF. These results show the potential of the proposed system for road surface identification. | es_ES |
dc.description.sponsorship | This work was supported by Spanish Administration and European Union grant TEC2017-84743-P, and Generalitat Valenciana under grant PROMETEO/2019/109. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.relation.ispartof | 2019 International Conference on Computational Science and Computational Intelligence (CSCI) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Road surface identification | es_ES |
dc.subject | Feature selection | es_ES |
dc.subject | Audio signals | es_ES |
dc.subject | Self-driving-vehicles | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A Multisensor System for Road Surface Identification | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1109/CSCI49370.2019.00132 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Safont, G.; Salazar Afanador, A.; Rodríguez, A.; Vergara Domínguez, L. (2019). A Multisensor System for Road Surface Identification. IEEE. 703-706. https://doi.org/10.1109/CSCI49370.2019.00132 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th Annual Conference on Computational Science & Computational Intelligence (CSCI'19) | es_ES |
dc.relation.conferencedate | Diciembre 05-07,2019 | es_ES |
dc.relation.conferenceplace | Las Vegas, USA | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/CSCI49370.2019.00132 | es_ES |
dc.description.upvformatpinicio | 703 | es_ES |
dc.description.upvformatpfin | 706 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\408028 | es_ES |