- -

A Multisensor System for Road Surface Identification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Multisensor System for Road Surface Identification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Safont, Gonzalo es_ES
dc.contributor.author Salazar Afanador, Addisson es_ES
dc.contributor.author Rodríguez, Alberto es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.date.accessioned 2022-02-17T07:20:49Z
dc.date.available 2022-02-17T07:20:49Z
dc.date.issued 2019-12-07 es_ES
dc.identifier.isbn 978-1-7281-5584-5 es_ES
dc.identifier.uri http://hdl.handle.net/10251/180927
dc.description.abstract [EN] This work introduces a multisensor road surface identification system that considers features from four different kind of sensors: microphones, accelerometers, speed signals, and handwheel signals. Features are extracted separately from each sensor, joined together, and then filtered using feature selection before classification. The proposed system was tested on a set of signals extracted from a specially-converted passenger car driving on a closed course. Three types of road surfaces were considered: smooth flat asphalt, cobblestones, and stripes. Three classifiers were considered: linear discriminant analysis, support vector machines, and random forests. All the considered classifiers reached over 90% accuracy, with a maximum accuracy of 96.52% for RDF. These results show the potential of the proposed system for road surface identification. es_ES
dc.description.sponsorship This work was supported by Spanish Administration and European Union grant TEC2017-84743-P, and Generalitat Valenciana under grant PROMETEO/2019/109. es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.relation.ispartof 2019 International Conference on Computational Science and Computational Intelligence (CSCI) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Classification es_ES
dc.subject Road surface identification es_ES
dc.subject Feature selection es_ES
dc.subject Audio signals es_ES
dc.subject Self-driving-vehicles es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A Multisensor System for Road Surface Identification es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1109/CSCI49370.2019.00132 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Safont, G.; Salazar Afanador, A.; Rodríguez, A.; Vergara Domínguez, L. (2019). A Multisensor System for Road Surface Identification. IEEE. 703-706. https://doi.org/10.1109/CSCI49370.2019.00132 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 6th Annual Conference on Computational Science & Computational Intelligence (CSCI'19) es_ES
dc.relation.conferencedate Diciembre 05-07,2019 es_ES
dc.relation.conferenceplace Las Vegas, USA es_ES
dc.relation.publisherversion https://doi.org/10.1109/CSCI49370.2019.00132 es_ES
dc.description.upvformatpinicio 703 es_ES
dc.description.upvformatpfin 706 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\408028 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem