- -

Microwave versus radiofrequency ablation for the treatment of liver malignancies: a randomized controlled phase 2 trial

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microwave versus radiofrequency ablation for the treatment of liver malignancies: a randomized controlled phase 2 trial

Mostrar el registro completo del ítem

Radosevic, A.; Quesada, R.; Serlavos, C.; Sánchez, J.; Zugazaga, A.; Sierra, A.; Coll, S.... (2022). Microwave versus radiofrequency ablation for the treatment of liver malignancies: a randomized controlled phase 2 trial. Scientific Reports. 12(1):1-10. https://doi.org/10.1038/s41598-021-03802-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/182125

Ficheros en el ítem

Metadatos del ítem

Título: Microwave versus radiofrequency ablation for the treatment of liver malignancies: a randomized controlled phase 2 trial
Autor: Radosevic, Aleksandar Quesada, Rita Serlavos, Clara Sánchez, Juan Zugazaga, Ander Sierra, Ana Coll, Susana Busto, Marcos Aguilar, Guadalupe Flores, Daniel Arce, Javier Maiques, Jose Maria Garcia-Retortillo, Montserrat Carrion, Jose Antonio Visa, Laura Berjano, Enrique Trujillo Guillen, Macarena
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Microwave (MWA) and radiofrequency ablation (RFA) are main ablative techniques for hepatocellular carcinoma (HCC) and colorectal liver metastasis (MT). This randomized phase 2 clinical trial compares the effectiveness ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-021-03802-x
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-021-03802-x
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
info:eu-repo/grantAgreement/MSC//FIS-PI12%2F00799/
Agradecimientos:
This work was supported by a grant for medical research from Spanish Government (FIS-PI12/00799) and by the Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I+D+i Orientada a los Retos ...[+]
Tipo: Artículo

References

Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

Nault, J. C., Sutter, O., Nahon, P., Ganne-Carrié, N. & Séror, O. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 68, 783–797 (2018).

Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 27, 1386–1422 (2016). [+]
Forner, A., Reig, M. & Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301–1314 (2018).

Nault, J. C., Sutter, O., Nahon, P., Ganne-Carrié, N. & Séror, O. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 68, 783–797 (2018).

Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 27, 1386–1422 (2016).

Meijerink, M. R. et al. Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: A systematic review and meta-analysis. Cardiovasc. Intervent. Radiol. 41, 1189–1204 (2018).

Sacks, D., McClenny, T. E., Cardella, J. F. & Lewis, C. A. Society of Interventional Radiology clinical practice guidelines. J. Vasc. Interv. Radiol. 14, S199-202 (2003).

Ding, J. et al. Comparison of two different thermal techniques for the treatment of hepatocellular carcinoma. Eur. J. Radiol. 82, 1379–1384 (2013).

Yu, J. et al. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: Results in ex vivo and in vivo porcine livers. Eur. J. Radiol. 79, 124–130 (2011).

Dodd, G. D., Dodd, N. A., Lanctot, A. C. & Glueck, D. A. Effect of variation of portal venous blood flow on radiofrequency and microwave ablations in a blood-perfused bovine liver model. Radiology 267, 129–136 (2013).

Primavesi, F. et al. Thermographic real-time-monitoring of surgical radiofrequency and microwave ablation in a perfused porcine liver model. Oncol. Lett. 15, 2913–2920 (2018).

Brace, C. L. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: What are the differences?. Curr. Probl. Diagn. Radiol. 38, 135–143 (2009).

Rossmann, C., Garrett-Mayer, E., Rattay, F. & Haemmerich, D. Dynamics of tissue shrinkage during ablative temperature exposures. Physiol. Meas. 35, 55–67 (2014).

Poulou, L. S., Botsa, E., Thanou, I., Ziakas, P. D. & Thanos, L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J. Hepatol. 7, 1054–1063 (2015).

Amabile, C. et al. Tissue shrinkage in microwave ablation of liver: an ex vivo predictive model. Int. J. Hyperth. 33, 101–109 (2017).

Kim, C. Understanding the nuances of microwave ablation for more accurate post-treatment assessment. Futur. Oncol. 14, 1755–1764 (2018).

Lee, J. K. et al. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation. Abdom. Radiol. 41, 659–666 (2016).

Pillai, K. et al. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Medicine 94, e580 (2015).

Louis Hinshaw, J., Lubner, M. G., Ziemlewicz, T. J., Lee, F. T. & Brace, C. L. Percutaneous tumor ablation tools: Microwave, radiofrequency, or cryoablation-what should you use and why?. Radiographics 34, 1344–1362 (2014).

Vogl, T. J. et al. Evaluation of microwave ablation of liver malignancy with enabled constant spatial energy control to achieve a predictable spherical ablation zone. Int. J. Hyperth. 34, 492–500 (2018).

Di Vece, F., Tombesi, P., Ermili, F., Maraldi, C. & Sartori, S. Coagulation areas produced by cool-tip radiofrequency ablation and microwave ablation using a device to decrease back-heating effects: A prospective pilot study. Cardiovasc. Intervent. Radiol. 37, 723–729 (2013).

Livraghi, T., Meloni, F., Solbiati, L. & Zanus, G. Complications of microwave ablation for liver tumors: Results of a multicenter study. Cardiovasc. Intervent. Radiol. 35, 868–874 (2012).

Kamal, A., Elmoety, A. A. A., Rostom, Y. A. M., Shater, M. S. & Lashen, S. A. Percutaneous radiofrequency versus microwave ablation for management of hepatocellular carcinoma: A randomized controlled trial. J. Gastrointest. Oncol. 10, 562–571 (2019).

Abdelaziz, A. et al. Efficacy and survival analysis of percutaneous radiofrequency versus microwave ablation for hepatocellular carcinoma: an egyptian multidisciplinary clinic experience. Surg. Endosc. Other Interv. Tech. 28, 3429–3434 (2014).

Yu, J. et al. Percutaneous cooled-probe microwave versus radiofrequency ablation in early-stage hepatocellular carcinoma: A phase III randomised controlled trial. Gut 66, 1172–1173 (2017).

Violi, N. V. et al. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 1253, 1–9 (2018).

Chong, C. C. N. et al. Prospective double-blinded randomized controlled trial of Microwave versus RadioFrequency Ablation for hepatocellular carcinoma (McRFA trial). HPB 22, 1121–1127 (2020).

Burdío, F. et al. Distant infusion of saline may enlarge coagulation volume during radiofrequency ablation of liver tissue using cool-tip electrodes without impairing predictability. Am. J. Roentgenol. 196, 837–843 (2011).

Ewertowska, E. et al. A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode. Int. J. Hyperth. 35, 194–204 (2018).

Kho, A. S. K., Foo, J. J., Ooi, E. T. & Ooi, E. H. Shape-shifting thermal coagulation zone during saline-infused radiofrequency ablation: A computational study on the effects of different infusion location. Comput. Methods Programs Biomed. 184, 105289 (2020).

Efird, J. Blocked randomization with randomly selected block sizes. Int. J. Environ. Res. Public Health 8, 15–20 (2011).

Schulz, K. F. & Grimes, D. A. Allocation concealment in randomised trials: defending against deciphering. Lancet 359, 614–618 (2002).

Xu, Y. et al. Microwave ablation is as effective as radiofrequency ablation for very-early-stage hepatocellular carcinoma. Chin. J. Cancer 36, 14 (2017).

Ahmed, M. et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria—A 10-year update. Radiology 273, 241–260 (2014).

Heerink, W. J. et al. The relationship between applied energy and ablation zone volume in patients with hepatocellular carcinoma and colorectal liver metastasis. Eur. Radiol. 28, 3228–3236 (2018).

Rhim, H., Lim, H. K., Kim, Y. S. & Choi, D. Percutaneous radiofrequency ablation with artificial ascites for hepatocellular carcinoma in the hepatic dome: Initial experience. Am. J. Roentgenol. 190, 91–98 (2008).

dos Abreu, L. A. et al. Volume and shape assessment of renal radiofrequency ablation lesion. Urology 116, 229.e7-229.e11 (2018).

Pereira, P. L. et al. Radiofrequency ablation: In vivo comparison of four commercially available devices in pig livers. Radiology 232, 482–490 (2004).

Khalilzadeh, O. et al. Proposal of a new adverse event classification by the society of interventional radiology standards of practice committee. J. Vasc. Interv. Radiol. 28, 1432-1437.e3 (2017).

Mulier, S. et al. Experimental and clinical radiofrequency ablation: Proposal for standardized description of coagulation size and geometry. Ann. Surg. Oncol. 14, 1381–1396 (2007).

Bruix, J. & Sherman, M. AASLD practice guideline management of hepatocellular carcinoma. Hepatology https://doi.org/10.1002/hep.20933 (2005).

Mulier, S. et al. Local recurrence after hepatic radiofrequency coagulation: Multivariate meta-analysis and review of contributing factors. Ann. Surg. 242, 158–171 (2005).

Ohmoto, K. et al. Comparison of therapeutic effects between radiofrequency ablation and percutaneous microwave coagulation therapy for small hepatocellular carcinomas. J. Gastroenterol. Hepatol. 24, 223–227 (2009).

Francica, G. et al. Radiofrequency and microwave ablation of subcapsular hepatocellular carcinoma accessed by direct puncture: Safety and efficacy. Eur. J. Radiol. 85, 739–743 (2016).

Shibata, T. et al. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology 223, 331–337 (2002).

Liao, Y. Y., Ge, D. X. & Zhang, X. Y. Letter: Is microwave ablation superior to radiofrequency ablation for early-stage hepatocellular carcinoma?. Aliment. Pharmacol. Ther. 48, 1325–1326 (2018).

van Tilborg, A. A. J. M. et al. MWA versus RFA for perivascular and peribiliary CRLM: A retrospective patient- and lesion-based analysis of two historical cohorts. Cardiovasc. Intervent. Radiol. 39, 1438–1446 (2016).

Vogl, T. J., Nour-Eldin, N. E. A., Hammerstingl, R. M., Panahi, B. & Naguib, N. N. N. Microwave ablation (MWA): Basics, technique and results in primary and metastatic liver neoplasms—review article. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren 189, 1055–1066 (2017).

Amabile, C. et al. Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. Int. J. Hyperth. 33, 34–42 (2017).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem